需求人群:
"用于自然语言处理、视觉问答等多模态任务"
使用场景示例:
用于自然语言处理任务
用于视觉问答任务
用于多模态任务
产品特色:
提供强大的多模态小语言模型
具有30亿参数
在多模态基准测试中表现优秀
浏览量:23
最新流量情况
月访问量
19075.32k
平均访问时长
00:05:32
每次访问页数
5.52
跳出率
45.07%
流量来源
直接访问
48.31%
自然搜索
36.36%
邮件
0.03%
外链引荐
12.17%
社交媒体
3.11%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.13%
印度
7.59%
日本
3.67%
俄罗斯
6.13%
美国
18.18%
多模态语言模型,融合文本和语音
Spirit LM是一个基础多模态语言模型,能够自由混合文本和语音。该模型基于一个7B预训练的文本语言模型,通过持续在文本和语音单元上训练来扩展到语音模式。语音和文本序列被串联为单个令牌流,并使用一个小的自动策划的语音-文本平行语料库,采用词级交错方法进行训练。Spirit LM有两个版本:基础版使用语音音素单元(HuBERT),而表达版除了音素单元外,还使用音高和风格单元来模拟表达性。对于两个版本,文本都使用子词BPE令牌进行编码。该模型不仅展现了文本模型的语义能力,还展现了语音模型的表达能力。此外,我们展示了Spirit LM能够在少量样本的情况下跨模态学习新任务(例如ASR、TTS、语音分类)。
一款强大的多模态小语言模型
Imp项目旨在提供一系列强大的多模态小语言模型(MSLMs)。我们的imp-v1-3b是一个拥有30亿参数的强大MSLM,它建立在一个小而强大的SLM Phi-2(27亿)和一个强大的视觉编码器SigLIP(4亿)之上,并在LLaVA-v1.5训练集上进行了训练。Imp-v1-3b在各种多模态基准测试中明显优于类似模型规模的对手,甚至在各种多模态基准测试中表现略优于强大的LLaVA-7B模型。
专为软件改进设计的开源大型语言模型。
Lingma SWE-GPT是一个开源的大型语言模型,专注于软件工程领域的任务,旨在提供智能化的开发支持。该模型基于Qwen系列基础模型,经过额外训练以增强其在复杂软件工程任务中的能力。它在软件工程智能代理的权威排行榜上表现出色,适合需要自动化软件改进的开发团队和研究人员。
现代Python数据框库,专为人工智能设计。
DataChain是一个现代的Python数据框库,专为人工智能设计。它旨在将非结构化数据组织成数据集,并在本地机器上大规模处理数据。DataChain不抽象或隐藏AI模型和API调用,而是帮助将它们集成到后现代数据堆栈中。该产品以其高效性、易用性和强大的数据处理能力为主要优点,支持多种数据存储和处理方式,包括图像、视频、文本等多种数据类型,并且能够与PyTorch和TensorFlow等深度学习框架无缝对接。DataChain是开源的,遵循Apache-2.0许可协议,免费供用户使用。
AI在医学领域的初步研究
o1 in Medicine是一个专注于医学领域的人工智能模型,旨在通过先进的语言模型技术,提升医学数据的处理能力和诊断准确性。该模型由UC Santa Cruz、University of Edinburgh和National Institutes of Health的研究人员共同开发,通过在多个医学数据集上的测试,展示了其在医学领域的应用潜力。o1模型的主要优点包括高准确率、多语言支持以及对复杂医学问题的深入理解能力。该模型的开发背景是基于当前医疗领域对于高效、准确的数据处理和分析的需求,尤其是在诊断和治疗建议方面。目前,该模型的研究和应用还处于初步阶段,但其在医学教育和临床实践中的应用前景广阔。
即买即用的人工智能对话服务
2233.ai是一个提供即买即用人工智能对话服务的网站。用户无需注册账号即可购买并使用服务,享受原生的ChatGPT Plus或Claude Pro体验。该平台强调个人隐私保护,每位用户的对话记录独立存储,确保私密安全。此外,2233.ai承诺无网络限制或封号问题,用户可以随时随地接入服务。价格方面,2233.ai提供的服务价格不到ChatGPT Plus订阅的一半,让更多人能够以更优惠的价格享受到先进的人工智能技术。
统一文本、音乐和动作生成模型
UniMuMo是一个多模态模型,能够将任意文本、音乐和动作数据作为输入条件,生成跨所有三种模态的输出。该模型通过将音乐、动作和文本转换为基于令牌的表示,通过统一的编码器-解码器转换器架构桥接这些模态。它通过微调现有的单模态预训练模型,显著降低了计算需求。UniMuMo在音乐、动作和文本模态的所有单向生成基准测试中都取得了有竞争力的结果。
国产化大模型,支持多模态,快速低成本智能化转型。
岩芯数智是一家专注于人工智能领域的公司,提供多种智能模型服务,包括Yan模型和Dolphin模型。Yan模型是国产化的大模型,支持多模态,承诺为用户提供训练周期短、数据集需求小、性价比更高的服务,帮助各产业链快速、低成本向智能化转型。Dolphin模型则提供智能对话、文章生成、文案摘要等功能,支持私域模型微调,以满足不同行业的需求。
加速模型评估和微调的智能评估工具
SFR-Judge 是 Salesforce AI Research 推出的一系列评估模型,旨在通过人工智能技术加速大型语言模型(LLMs)的评估和微调过程。这些模型能够执行多种评估任务,包括成对比较、单项评分和二元分类,同时提供解释,避免黑箱问题。SFR-Judge 在多个基准测试中表现优异,证明了其在评估模型输出和指导微调方面的有效性。
轻量级语言模型编程库,将提示视为函数。
ell是一个轻量级的语言模型编程库,它将提示视为函数,而不是简单的字符串。ell的设计基于在OpenAI和创业生态系统中多年构建和使用语言模型的经验。它提供了一种全新的编程方式,允许开发者通过定义函数来生成发送给语言模型的字符串提示或消息列表。这种封装方式为用户创建了一个清晰的接口,用户只需关注LMP所需的数据。ell还提供了丰富的工具,支持监控、版本控制和可视化,使得提示工程从一门黑艺术转变为一门科学。
情商智商俱佳的多模态大模型
西湖大模型是心辰智能云推出的一款具有高情商和智商的多模态大模型,它能够处理包括文本、图像、声音等多种数据类型,为用户提供智能对话、写作、绘画、语音等AI服务。该模型通过先进的人工智能算法,能够理解和生成自然语言,适用于多种场景,如心理咨询、内容创作、客户服务等,具有高度的定制性和灵活性。西湖大模型的推出,标志着心辰智能云在AI领域的技术实力和创新能力,为用户提供了更加丰富和高效的智能服务体验。
统一多模态理解和生成的单一变换器
Show-o是一个用于多模态理解和生成的单一变换器模型,它能够处理图像字幕、视觉问答、文本到图像生成、文本引导的修复和扩展以及混合模态生成。该模型由新加坡国立大学的Show Lab和字节跳动共同开发,采用最新的深度学习技术,能够理解和生成多种模态的数据,是人工智能领域的一大突破。
多模态视觉任务的高效转换模型
LLaVA-OneVision是一款由字节跳动公司与多所大学合作开发的多模态大型模型(LMMs),它在单图像、多图像和视频场景中推动了开放大型多模态模型的性能边界。该模型的设计允许在不同模态/场景之间进行强大的迁移学习,展现出新的综合能力,特别是在视频理解和跨场景能力方面,通过图像到视频的任务转换进行了演示。
一万亿Token和34亿张图像的多模态数据集
MINT-1T是由Salesforce AI开源的多模态数据集,包含一万亿个文本标记和34亿张图像,规模是现有开源数据集的10倍。它不仅包含HTML文档,还包括PDF文档和ArXiv论文,丰富了数据集的多样性。MINT-1T的数据集构建涉及多种来源的数据收集、处理和过滤步骤,确保了数据的高质量和多样性。
通过街霸3对战评估大型语言模型
llm-colosseum是一个创新的基准测试工具,它使用街霸3游戏来评估大型语言模型(LLM)的实时决策能力。与传统的基准测试不同,这个工具通过模拟实际游戏场景来测试模型的快速反应、智能策略、创新思维、适应性和恢复力。
多模态长篇故事生成模型
SEED-Story是一个基于大型语言模型(MLLM)的多模态长篇故事生成模型,能够根据用户提供的图片和文本生成丰富、连贯的叙事文本和风格一致的图片。它代表了人工智能在创意写作和视觉艺术领域的前沿技术,具有生成高质量、多模态故事内容的能力,为创意产业提供了新的可能性。
大型多模态模型,处理多图像、视频和3D数据。
LLaVA-NeXT是一个大型多模态模型,它通过统一的交错数据格式处理多图像、视频、3D和单图像数据,展示了在不同视觉数据模态上的联合训练能力。该模型在多图像基准测试中取得了领先的结果,并在不同场景中通过适当的数据混合提高了之前单独任务的性能或保持了性能。
与私有自托管语言模型对话的iOS/macOS应用
Enchanted是一个开源的、兼容Ollama的macOS/iOS/visionOS应用,它允许用户与私有自托管的语言模型如Llama 2、Mistral、Vicuna等进行对话。它基本上是一个连接到私有模型的ChatGPT应用界面。Enchanted的目标是提供一个产品,允许在iOS生态系统(macOS、iOS、Watch、Vision Pro)的所有设备上提供无过滤、安全、私密和多模态的体验。
多功能中文英文对话模型
Gemma-2-9B-Chinese-Chat是一款基于google/gemma-2-9b-it的指令调整型语言模型,专为中英文用户设计,具备角色扮演和工具使用等多种能力。该模型通过ORPO算法进行微调,显著提升了对中文问题的响应准确性,减少了中英文混合使用的问题,并在角色扮演、工具使用和数学计算方面表现出色。
革命性AI技术,多模态智能互动
GPT-4o是OpenAI的最新创新,代表了人工智能技术的前沿。它通过真正的多模态方法扩展了GPT-4的功能,包括文本、视觉和音频。GPT-4o以其快速、成本效益和普遍可访问性,革命性地改变了我们与AI技术的互动。它在文本理解、图像分析和语音识别方面表现出色,提供流畅直观的AI互动,适合从学术研究到特定行业需求的多种应用。
大型视频-语言模型,提供视觉问答和视频字幕生成。
VideoLLaMA2-7B是由DAMO-NLP-SG团队开发的多模态大型语言模型,专注于视频内容的理解和生成。该模型在视觉问答和视频字幕生成方面具有显著的性能,能够处理复杂的视频内容,并生成准确、自然的语言描述。它在空间-时间建模和音频理解方面进行了优化,为视频内容的智能分析和处理提供了强大的支持。
多模态语言模型的视觉推理工具
Visual Sketchpad 是一种为多模态大型语言模型(LLMs)提供视觉草图板和绘图工具的框架。它允许模型在进行规划和推理时,根据自己绘制的视觉工件进行操作。与以往使用文本作为推理步骤的方法不同,Visual Sketchpad 使模型能够使用线条、框、标记等更接近人类绘图方式的元素进行绘图,从而更好地促进推理。此外,它还可以在绘图过程中使用专家视觉模型,例如使用目标检测模型绘制边界框,或使用分割模型绘制掩码,以进一步提高视觉感知和推理能力。
首个全面评估多模态大型语言模型在视频分析中的性能基准。
Video-MME是一个专注于多模态大型语言模型(MLLMs)在视频分析领域性能评估的基准测试。它填补了现有评估方法中对MLLMs处理连续视觉数据能力的空白,为研究者提供了一个高质量和全面的评估平台。该基准测试覆盖了不同长度的视频,并针对MLLMs的核心能力进行了评估。
实时更新的多模态模型性能排行榜
OpenCompass多模态排行榜是一个实时更新的平台,用于评估和排名不同的多模态模型(VLMs)。它通过8个多模态基准测试来计算模型的平均得分,并提供详细的性能数据。该平台仅包含开源的VLMs或公开可用的APIs,旨在帮助研究人员和开发者了解当前多模态模型的最新进展和性能表现。
GPT4 Omni是一款远不止于语音助手的产品。
GPT4 Omni是一种全新的模型,可以处理文本、视觉和音频,具有多模态功能。它在语音能力方面具有革命性,同时还具备文本、图像和音频处理的能力。GPT4 Omni的优势是可以同时处理和生成多种主要模态,且响应时间较快。
GPT4 Omni是一款更多功能的语音助手。
GPT4 Omni是一款多模态模型,能处理和生成文本、音频和图像。它结合了OpenAI的Whisper和TTS技术,具有更好的推理能力和更低的延迟。GPT4 Omni是OpenAI目前最先进的模型,具有革命性的多模态能力,为用户提供了更多的创造力和灵活性。它的价格更低且更高效,代表了人工智能技术的新一代。
比较不同大型语言模型的输出
LLM Comparator是一个在线工具,用于比较不同大型语言模型(LLMs)的输出。它允许用户输入问题或提示,然后由多个模型生成回答。通过比较这些回答,用户可以了解不同模型在理解、生成文本和遵循指令方面的能力。该工具对于研究人员、开发者和任何对人工智能语言模型有兴趣的人来说都非常重要。
专为数据标注、清洗和丰富设计的先进语言模型
Refuel LLM-2 是一款为数据标注、清洗和丰富而设计的先进语言模型。它在约30种数据标注任务的基准测试中超越了所有现有的最先进语言模型,包括GPT-4-Turbo、Claude-3-Opus和Gemini-1.5-Pro。Refuel LLM-2 旨在提高数据团队的工作效率,减少在数据清洗、规范化、标注等前期工作上的手动劳动,从而更快地实现数据的商业价值。
© 2024 AIbase 备案号:闽ICP备08105208号-14