需求人群:
"目标受众为需要处理长文本数据的开发者、数据科学家和研究人员。ModernBERT-base由于其长文本处理能力和对英文及代码数据的优化,特别适合于自然语言处理、代码检索和混合(文本+代码)语义搜索等场景。"
使用场景示例:
在大规模文档中进行信息检索
对代码库进行语义搜索以找到相关函数或模块
在大型语料库中进行文本分类和语义搜索
产品特色:
支持长达8192个token的长文本处理能力
Rotary Positional Embeddings (RoPE) 支持长上下文
Local-Global Alternating Attention 提升长输入的效率
Unpadding和Flash Attention 优化推理效率
适用于大规模文本和代码数据的预训练
无需token type IDs,简化了下游任务的使用
支持使用Flash Attention 2以获得更高的效率
使用教程:
1. 安装transformers库:使用pip安装git+https://github.com/huggingface/transformers.git。
2. 加载模型和分词器:使用AutoTokenizer和AutoModelForMaskedLM从预训练模型加载分词器和模型。
3. 准备输入文本:将待处理的文本输入到分词器中,获取模型需要的输入格式。
4. 模型推理:将处理好的输入数据传递给模型,进行推理。
5. 获取预测结果:对于Masked Language Model任务,获取模型对[MASK]位置的预测结果。
6. 应用下游任务:对于分类、检索或问答等任务,可以对ModernBERT进行微调以适应特定任务。
7. 使用Flash Attention 2优化效率:如果GPU支持,安装flash-attn库并使用以获得更高的推理效率。
浏览量:13
最新流量情况
月访问量
20899.84k
平均访问时长
00:04:57
每次访问页数
5.24
跳出率
46.04%
流量来源
直接访问
48.28%
自然搜索
36.58%
邮件
0.03%
外链引荐
12.01%
社交媒体
3.07%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.07%
印度
7.93%
日本
3.42%
俄罗斯
5.95%
美国
18.10%
高效处理长文本的双向编码器模型
ModernBERT-base是一个现代化的双向编码器Transformer模型,预训练于2万亿英文和代码数据,原生支持长达8192个token的上下文。该模型采用了Rotary Positional Embeddings (RoPE)、Local-Global Alternating Attention和Unpadding等最新架构改进,使其在长文本处理任务中表现出色。ModernBERT-base适用于需要处理长文档的任务,如检索、分类和大型语料库中的语义搜索。模型训练数据主要为英文和代码,因此可能在其他语言上的表现会有所降低。
高性能的双向编码器Transformer模型
ModernBERT-large是一个现代化的双向编码器Transformer模型(BERT风格),在2万亿个英文和代码数据上预训练,具有长达8192个token的原生上下文长度。该模型采用了最新的架构改进,如旋转位置嵌入(RoPE)以支持长上下文,局部-全局交替注意力以提高长输入的效率,以及无填充和Flash Attention以提高推理效率。ModernBERT-long适合处理需要处理长文档的任务,如检索、分类和大型语料库中的语义搜索。模型训练数据主要是英文和代码,因此可能在其他语言上的表现会较低。
ModernBERT是新一代的编码器模型,性能卓越。
ModernBERT是由Answer.AI和LightOn共同发布的新一代编码器模型,它是BERT模型的全面升级版,提供了更长的序列长度、更好的下游性能和更快的处理速度。ModernBERT采用了最新的Transformer架构改进,特别关注效率,并使用了现代数据规模和来源进行训练。作为编码器模型,ModernBERT在各种自然语言处理任务中表现出色,尤其是在代码搜索和理解方面。它提供了基础版(139M参数)和大型版(395M参数)两种模型尺寸,适合各种规模的应用需求。
多模态原生Mixture-of-Experts模型
Aria-Base-64K是Aria系列的基础模型之一,专为研究目的和继续训练而设计。该模型在长文本预训练阶段后形成,经过33B个token(21B多模态,12B语言,69%为长文本)的训练。它适合于长视频问答数据集或长文档问答数据集的继续预训练或微调,即使在资源有限的情况下,也可以通过短指令调优数据集进行后训练,并转移到长文本问答场景。该模型能够理解多达250张高分辨率图像或多达500张中等分辨率图像,并在语言和多模态场景中保持强大的基础性能。
开源的32亿参数代码生成语言模型
Qwen2.5-Coder-32B-Instruct-GPTQ-Int4是基于Qwen2.5的代码生成大型语言模型,具有32.5亿参数量,支持长文本处理,最大支持128K tokens。该模型在代码生成、代码推理和代码修复方面有显著提升,是当前开源代码语言模型中的佼佼者。它不仅增强了编码能力,还保持了在数学和通用能力方面的优势。
新一代多语言预训练模型,性能卓越。
Qwen2是一系列经过预训练和指令调整的模型,支持多达27种语言,包括英语和中文。这些模型在多个基准测试中表现出色,特别是在编码和数学方面有显著提升。Qwen2模型的上下文长度支持高达128K个token,适用于处理长文本任务。此外,Qwen2-72B-Instruct模型在安全性方面与GPT-4相当,显著优于Mistral-8x22B模型。
新一代开源预训练模型,支持多轮对话和多语言。
GLM-4-9B-Chat-1M 是智谱 AI 推出的新一代预训练模型,属于 GLM-4 系列的开源版本。它在语义、数学、推理、代码和知识等多方面的数据集测评中展现出较高的性能。该模型不仅支持多轮对话,还具备网页浏览、代码执行、自定义工具调用和长文本推理等高级功能。支持包括日语、韩语、德语在内的26种语言,并特别推出了支持1M上下文长度的模型版本,适合需要处理大量数据和多语言环境的开发者和研究人员使用。
新一代多语言预训练模型,支持长文本和代码执行。
GLM-4-9B-Chat是智谱AI推出的新一代预训练模型GLM-4系列中的开源版本,具备多轮对话、网页浏览、代码执行、自定义工具调用和长文本推理等高级功能。支持包括日语、韩语、德语在内的26种语言,并且推出了支持1M上下文长度的模型。
开源的端到端自动驾驶多模态模型
OpenEMMA是一个开源项目,复现了Waymo的EMMA模型,提供了一个端到端框架用于自动驾驶车辆的运动规划。该模型利用预训练的视觉语言模型(VLMs)如GPT-4和LLaVA,整合文本和前视摄像头输入,实现对未来自身路径点的精确预测,并提供决策理由。OpenEMMA的目标是为研究人员和开发者提供易于获取的工具,以推进自动驾驶研究和应用。
多视角视频生成同步技术
SynCamMaster是一种先进的视频生成技术,它能够从多样化的视角同步生成多摄像机视频。这项技术通过预训练的文本到视频模型,增强了视频内容在不同视角下的动态一致性,对于虚拟拍摄等应用场景具有重要意义。该技术的主要优点包括能够处理开放世界视频的任意视角生成,整合6自由度摄像机姿态,并设计了一种渐进式训练方案,利用多摄像机图像和单目视频作为补充,显著提升了模型性能。
前沿级别的AI模型,提供顶级的指令遵循和长文本处理能力。
EXAONE 3.5是LG AI Research发布的一系列人工智能模型,这些模型以其卓越的性能和成本效益而著称。它们在模型训练效率、去污染处理、长文本理解和指令遵循能力方面表现出色。EXAONE 3.5模型的开发遵循了LG的AI伦理原则,进行了AI伦理影响评估,以确保模型的负责任使用。这些模型的发布旨在推动AI研究和生态系统的发展,并为AI创新奠定基础。
多模态大型语言模型,融合视觉与语言理解。
InternVL2_5-26B是一个先进的多模态大型语言模型(MLLM),在InternVL 2.0的基础上,通过引入显著的训练和测试策略增强以及数据质量提升,进一步发展而来。该模型保持了其前身的“ViT-MLP-LLM”核心模型架构,并集成了新增量预训练的InternViT与各种预训练的大型语言模型(LLMs),例如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。InternVL 2.5系列模型在多模态任务中展现出卓越的性能,尤其在视觉感知和多模态能力方面。
70B参数的多语言大型预训练语言模型
Meta Llama 3.3是一个70B参数的多语言大型预训练语言模型(LLM),专为多语言对话用例优化,并在常见行业基准测试中表现优于许多现有的开源和封闭聊天模型。该模型采用优化的Transformer架构,并使用监督式微调(SFT)和基于人类反馈的强化学习(RLHF)来符合人类的有用性和安全性偏好。
开源AI语音处理工具包,支持语音增强、分离和目标说话人提取。
ClearerVoice-Studio是一个开源的AI驱动语音处理工具包,专为研究人员、开发者和最终用户设计。它提供了语音增强、语音分离、目标说话人提取等功能,并提供了最新的预训练模型以及训练和推理脚本,全部可通过此仓库访问。该工具包以其预训练模型、易用性、全面功能和社区驱动的特点而受到青睐。
大规模多模态预训练数据集
allenai/olmo-mix-1124数据集是由Hugging Face提供的一个大规模多模态预训练数据集,主要用于训练和优化自然语言处理模型。该数据集包含了大量的文本信息,覆盖了多种语言,并且可以用于各种文本生成任务。它的重要性在于提供了一个丰富的资源,使得研究人员和开发者能够训练出更加精准和高效的语言模型,进而推动自然语言处理技术的发展。
文档智能的视觉引导生成文本布局预训练模型
ViTLP是一个视觉引导的生成文本布局预训练模型,旨在提高文档智能处理的效率和准确性。该模型结合了OCR文本定位和识别功能,能够在文档图像上进行快速准确的文本检测和识别。ViTLP模型的预训练版本ViTLP-medium(380M参数)在计算资源和预训练数据集规模的限制下,提供了一个平衡的解决方案,既保证了模型的性能,又优化了推理速度和内存使用。ViTLP的推理速度在Nvidia 4090上处理一页文档图像通常在5到10秒内,与大多数OCR引擎相比具有竞争力。
基于Transformer的作者表示学习模型
LLNL/LUAR是一个基于Transformer的模型,用于学习作者表示,主要用于作者验证的跨领域迁移研究。该模型在EMNLP 2021论文中被介绍,研究了在一个领域学习的作者表示是否能迁移到另一个领域。模型的主要优点包括能够处理大规模数据集,并在多个不同的领域(如亚马逊评论、同人小说短篇故事和Reddit评论)中进行零样本迁移。产品背景信息包括其在跨领域作者验证领域的创新性研究,以及在自然语言处理领域的应用潜力。该产品是开源的,遵循Apache-2.0许可协议,可以免费使用。
Qwen2.5-Coder系列中的0.5B参数指令调优模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专注于代码生成、代码推理和代码修复。基于强大的Qwen2.5,Qwen2.5-Coder-32B已成为当前最先进的开源代码语言模型,其编码能力与GPT-4o相匹配。该模型在实际应用中,如代码代理等,提供了更全面的基础,不仅增强了编码能力,还保持了在数学和通用能力方面的优势。
高效处理长文本的先进语言模型
Qwen2.5-Turbo是阿里巴巴开发团队推出的一款能够处理超长文本的语言模型,它在Qwen2.5的基础上进行了优化,支持长达1M个token的上下文,相当于约100万英文单词或150万中文字符。该模型在1M-token Passkey Retrieval任务中实现了100%的准确率,并在RULER长文本评估基准测试中得分93.1,超越了GPT-4和GLM4-9B-1M。Qwen2.5-Turbo不仅在长文本处理上表现出色,还保持了短文本处理的高性能,且成本效益高,每1M个token的处理成本仅为0.3元。
Qwen2.5-Coder系列中的3B参数指令调优模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专为代码生成、推理和修复而设计。该模型基于Qwen2.5,扩展了训练令牌至5.5万亿,包括源代码、文本代码基础、合成数据等。Qwen2.5-Coder-32B是目前开源代码LLM中的佼佼者,其编码能力与GPT-4o相匹配。此模型为GPTQ-量化的4位指令调优3B参数Qwen2.5-Coder模型,具有因果语言模型、预训练和后训练阶段、transformers架构等特点。
开源代码生成语言模型
Qwen2.5-Coder-32B-Instruct-GPTQ-Int8是Qwen系列中针对代码生成优化的大型语言模型,拥有32亿参数,支持长文本处理,是当前开源代码生成领域最先进的模型之一。该模型基于Qwen2.5进行了进一步的训练和优化,不仅在代码生成、推理和修复方面有显著提升,而且在数学和通用能力上也保持了优势。模型采用GPTQ 8-bit量化技术,以减少模型大小并提高运行效率。
开源代码生成大型语言模型
Qwen2.5-Coder是一系列针对代码生成优化的大型语言模型,覆盖了0.5、1.5、3、7、14、32亿参数的六种主流模型尺寸,以满足不同开发者的需求。Qwen2.5-Coder在代码生成、代码推理和代码修复方面有显著提升,基于强大的Qwen2.5,训练令牌扩展到5.5万亿,包括源代码、文本代码接地、合成数据等,成为当前最先进的开源代码LLM,其编码能力与GPT-4o相匹配。此外,Qwen2.5-Coder还提供了更全面的基础,适用于现实世界中的代码代理等应用场景。
Qwen2.5-Coder系列中的指令调优0.5B参数代码生成模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专注于代码生成、代码推理和代码修复。基于强大的Qwen2.5,通过扩展训练令牌到5.5万亿,包括源代码、文本代码基础、合成数据等,Qwen2.5-Coder-32B已成为当前最先进的开源代码LLM,其编码能力与GPT-4o相匹配。该模型不仅增强了编码能力,还保持了在数学和通用能力方面的优势,为实际应用如代码代理提供了更全面的基础。
Qwen2.5-Coder系列中的3B参数模型,专注于代码生成与理解。
Qwen2.5-Coder-3B是Qwen2.5-Coder系列中的一个大型语言模型,专注于代码生成、推理和修复。基于强大的Qwen2.5,该模型通过增加训练令牌至5.5万亿,包括源代码、文本代码基础、合成数据等,实现了在代码生成、推理和修复方面的显著改进。Qwen2.5-Coder-32B已成为当前最先进的开源代码大型语言模型,其编码能力与GPT-4o相匹配。此外,Qwen2.5-Coder-3B还为现实世界的应用提供了更全面的基础,如代码代理,不仅增强了编码能力,还保持了在数学和通用能力方面的优势。
Qwen2.5-Coder系列技术报告
Qwen2.5-Coder系列是基于Qwen2.5架构的代码特定模型,包括Qwen2.5-Coder-1.5B和Qwen2.5-Coder-7B两个模型。这些模型在超过5.5万亿个token的大规模语料库上继续预训练,并通过精细的数据清洗、可扩展的合成数据生成和平衡的数据混合,展现出令人印象深刻的代码生成能力,同时保持了通用性。Qwen2.5-Coder在包括代码生成、补全、推理和修复在内的多种代码相关任务上取得了超过10个基准测试的最新性能,并且一致性地超越了同等大小的更大模型。该系列的发布不仅推动了代码智能研究的边界,而且通过其许可授权,鼓励开发者在现实世界的应用中更广泛地采用。
Qwen2.5-Coder系列中参数最多的开源代码生成模型
Qwen2.5-Coder-32B是基于Qwen2.5的代码生成模型,拥有32亿参数,是目前开源代码语言模型中参数最多的模型之一。它在代码生成、代码推理和代码修复方面有显著提升,能够处理长达128K tokens的长文本,适用于代码代理等实际应用场景。该模型在数学和通用能力上也保持了优势,支持长文本处理,是开发者在进行代码开发时的强大助手。
Go语言库,用于嵌入式向量搜索和语义嵌入
kelindar/search 是一个Go语言库,它提供了嵌入式向量搜索和语义嵌入的功能,基于llama.cpp构建。这个库特别适合于小到中型项目,需要强大的语义搜索能力,同时保持简单高效的实现。它支持GGUF BERT模型,允许用户利用复杂的嵌入技术,而不需要深陷传统搜索系统的复杂性。该库还提供了GPU加速功能,能够在支持的硬件上快速进行计算。如果你的数据集少于100,000条目,这个库可以轻松集成到你的Go应用中,实现语义搜索功能。
多语言大型语言模型,支持23种语言
Aya Expanse是一个具有高级多语言能力的开放权重研究模型。它专注于将高性能的预训练模型与Cohere For AI一年的研究成果相结合,包括数据套利、多语言偏好训练、安全调整和模型合并。该模型是一个强大的多语言大型语言模型,服务于23种语言,包括阿拉伯语、中文(简体和繁体)、捷克语、荷兰语、英语、法语、德语、希腊语、希伯来语、印地语、印尼语、意大利语、日语、韩语、波斯语、波兰语、葡萄牙语、罗马尼亚语、俄语、西班牙语、土耳其语、乌克兰语和越南语。
© 2024 AIbase 备案号:闽ICP备08105208号-14