需求人群:
"目标受众为自然语言处理领域的研究人员、开发者以及企业用户。ModernBERT因其卓越的性能和效率,特别适合需要处理大量数据和对实时性要求高的应用场景,如搜索引擎、推荐系统、聊天机器人等。同时,由于其在代码理解和检索方面的优势,也非常适合开发人员和编程辅助工具使用。"
使用场景示例:
在RAG(Retrieval Augmented Generation)管道中作为编码器使用,提高语义理解能力。
作为AI连接的集成开发环境(IDE)的一部分,提供快速的长上下文代码检索。
在StackOverflow-QA数据集上进行代码和自然语言混合的任务处理,展现出超过80分的优异表现。
产品特色:
支持长达8192个序列长度的输入,是大多数编码器的16倍。
在多个自然语言处理任务中表现优异,包括分类、检索和问答。
作为掩码语言模型(MLM),可以通过`fill-mask`管道或`AutoModelForMaskedLM`进行加载和使用。
不使用token类型ID,简化了与标准BERT模型的下游使用。
在训练数据中包含了大量代码,使其在编程相关任务上具有独特的优势。
支持Flash Attention 2,以实现更高的效率。
可以作为任何类似BERT模型的即插即用替代品。
使用教程:
1. 安装ModernBERT模型:使用pip安装`transformers`库,并从Hugging Face Hub加载ModernBERT模型。
2. 加载模型和分词器:使用`AutoTokenizer`和`AutoModelForMaskedLM`从预训练模型中加载分词器和模型。
3. 准备输入文本:将待处理的文本通过分词器进行编码,得到模型可以理解的输入格式。
4. 模型推理:将编码后的输入传递给模型,获取模型输出。
5. 解码预测结果:根据模型输出的logits,找到预测的token ID,并将其解码为可读文本。
6. 微调模型:根据具体下游任务,对ModernBERT模型进行微调,以适应特定应用场景。
浏览量:41
最新流量情况
月访问量
23904.81k
平均访问时长
00:04:51
每次访问页数
5.82
跳出率
43.33%
流量来源
直接访问
48.28%
自然搜索
35.88%
邮件
0.03%
外链引荐
12.71%
社交媒体
3.06%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.77%
印度
8.48%
日本
3.85%
俄罗斯
4.86%
美国
17.58%
高性能的双向编码器Transformer模型
ModernBERT-large是一个现代化的双向编码器Transformer模型(BERT风格),在2万亿个英文和代码数据上预训练,具有长达8192个token的原生上下文长度。该模型采用了最新的架构改进,如旋转位置嵌入(RoPE)以支持长上下文,局部-全局交替注意力以提高长输入的效率,以及无填充和Flash Attention以提高推理效率。ModernBERT-long适合处理需要处理长文档的任务,如检索、分类和大型语料库中的语义搜索。模型训练数据主要是英文和代码,因此可能在其他语言上的表现会较低。
高效处理长文本的双向编码器模型
ModernBERT-base是一个现代化的双向编码器Transformer模型,预训练于2万亿英文和代码数据,原生支持长达8192个token的上下文。该模型采用了Rotary Positional Embeddings (RoPE)、Local-Global Alternating Attention和Unpadding等最新架构改进,使其在长文本处理任务中表现出色。ModernBERT-base适用于需要处理长文档的任务,如检索、分类和大型语料库中的语义搜索。模型训练数据主要为英文和代码,因此可能在其他语言上的表现会有所降低。
ModernBERT是新一代的编码器模型,性能卓越。
ModernBERT是由Answer.AI和LightOn共同发布的新一代编码器模型,它是BERT模型的全面升级版,提供了更长的序列长度、更好的下游性能和更快的处理速度。ModernBERT采用了最新的Transformer架构改进,特别关注效率,并使用了现代数据规模和来源进行训练。作为编码器模型,ModernBERT在各种自然语言处理任务中表现出色,尤其是在代码搜索和理解方面。它提供了基础版(139M参数)和大型版(395M参数)两种模型尺寸,适合各种规模的应用需求。
编码器自由的视觉-语言模型,高效且数据驱动。
EVE是一个编码器自由的视觉-语言模型,由大连理工大学、北京人工智能研究院和北京大学的研究人员共同开发。它在不同图像宽高比下展现出卓越的能力,性能超越了Fuyu-8B,并且接近模块化编码器基础的LVLMs。EVE在数据效率、训练效率方面表现突出,使用33M公开数据进行预训练,并利用665K LLaVA SFT数据为EVE-7B模型训练,以及额外的1.2M SFT数据为EVE-7B (HD)模型训练。EVE的开发采用了高效、透明、实用的策略,为跨模态的纯解码器架构开辟了新途径。
Gemma 2 9B和2B模型的稀疏自编码器套件
Gemma Scope是一套为Gemma 2的9B和2B模型设计的稀疏自编码器,它像显微镜一样帮助我们分析模型内部的激活,从而理解其背后的概念。这些自编码器可以用于研究模型的内部激活,类似于生物学家用显微镜研究植物和动物的细胞。
文本编码器微调技术,提升文本到图像生成模型性能
TextCraftor是一种创新的文本编码器微调技术,能够显著提升文本到图像生成模型的性能。通过奖励函数优化,它改善了图像质量与文本对齐,无需额外数据集。
视频理解基础模型
VideoPrism是一个通用的视频编码模型,能够在各种视频理解任务上取得领先的性能,包括分类、定位、检索、字幕生成和问答等。其创新点在于预训练的数据集非常大且多样,包含3600万高质量的视频-文本对,以及5.82亿带有嘈杂文本的视频剪辑。预训练采用两阶段策略,先利用对比学习匹配视频和文本,然后预测遮蔽的视频块,充分利用不同的监督信号。一个固定的VideoPrism模型可以直接适配到下游任务,并在30个视频理解基准上刷新状态最优成绩。
高保真视频编码,适用于大运动场景的视频自编码器。
这是一个视频变分自编码器(VAE),旨在减少视频冗余并促进高效视频生成。该模型通过观察发现,将图像VAE直接扩展到3D VAE会引入运动模糊和细节失真,因此提出了时间感知的空间压缩以更好地编码和解码空间信息。此外,该模型还集成了一个轻量级的运动压缩模型以实现进一步的时间压缩。通过利用文本到视频数据集中固有的文本信息,并在模型中加入文本指导,显著提高了重建质量,特别是在细节保留和时间稳定性方面。该模型还通过在图像和视频上进行联合训练来提高其通用性,不仅提高了重建质量,还使模型能够执行图像和视频的自编码。广泛的评估表明,该方法的性能优于最近的强基线。
深入理解Transformer模型的可视化工具
Transformer Explainer是一个致力于帮助用户深入理解Transformer模型的在线可视化工具。它通过图形化的方式展示了Transformer模型的各个组件,包括自注意力机制、前馈网络等,让用户能够直观地看到数据在模型中的流动和处理过程。该工具对于教育和研究领域具有重要意义,可以帮助学生和研究人员更好地理解自然语言处理领域的先进技术。
用于准确渲染视觉文本的定制文本编码器
Glyph-ByT5是一种定制的文本编码器,旨在提高文本到图像生成模型中的视觉文本渲染准确性。它通过微调字符感知的ByT5编码器并使用精心策划的成对字形文本数据集来实现。将Glyph-ByT5与SDXL集成后,形成了Glyph-SDXL模型,使设计图像生成中的文本渲染准确性从低于20%提高到接近90%。该模型还能够实现段落文本的自动多行布局渲染,字符数量从几十到几百字符都能保持较高的拼写准确性。此外,通过使用少量高质量的包含视觉文本的真实图像进行微调,Glyph-SDXL在开放域真实图像中的场景文本渲染能力也有了大幅提升。这些令人鼓舞的成果旨在鼓励进一步探索为不同具有挑战性的任务设计定制的文本编码器。
基于 Transformer 的图像识别模型
Google Vision Transformer 是一款基于 Transformer 编码器的图像识别模型,使用大规模图像数据进行预训练,可用于图像分类等任务。该模型在 ImageNet-21k 数据集上进行了预训练,并在 ImageNet 数据集上进行了微调,具备良好的图像特征提取能力。该模型通过将图像切分为固定大小的图像块,并线性嵌入这些图像块来处理图像数据。同时,模型在输入序列前添加了位置编码,以便在 Transformer 编码器中处理序列数据。用户可以通过在预训练的编码器之上添加线性层进行图像分类等任务。Google Vision Transformer 的优势在于其强大的图像特征学习能力和广泛的适用性。该模型免费提供使用。
LLaVA-3b是一种基于Dolphin 2.6 Phi进行微调的模型,使用SigLIP 400M的视觉塔以LLaVA方式进行微调。模型具有多个图像标记、使用视觉编码器的最新层输出等特点。
LLaVA-3b是一种基于Dolphin 2.6 Phi进行微调的模型,使用SigLIP 400M的视觉塔以LLaVA方式进行微调。模型具有多个图像标记、使用视觉编码器的最新层输出等特点。此模型基于Phi-2,受微软研究许可证约束,禁止商业使用。感谢ML Collective提供的计算资源积分。
预训练T5模型,采用段落破坏和替换标记检测
SpacTor是一种新的训练程序,包括(1)结合了段落破坏(SC)和标记替换检测(RTD)的混合目标,以及(2)一个两阶段课程,该课程在初始tau次迭代中优化混合目标,然后过渡到标准的SC损失。我们在多种NLP任务上进行了实验,使用编码器-解码器架构(T5),SpacTor-T5在下游性能方面与标准的SC预训练相当,同时减少了50%的预训练迭代次数和40%的总FLOPs。另外,在相同的计算预算下,我们发现SpacTor能够显著提高下游基准性能。
基于羊驼模型的大型语音生成模型
LlamaVoice是一个基于羊驼模型的大型语音生成模型,它通过直接预测连续特征,提供了一种与传统依赖于离散语音码预测的向量量化模型相比更为流畅和高效的处理过程。该模型具有连续特征预测、变分自编码器(VAE)潜在特征预测、联合训练、先进采样策略和基于流的增强等关键特点。
大规模训练 Transformer 模型的持续研究
Megatron-LM 是由 NVIDIA 应用深度学习研究团队开发的一种强大的大规模 Transformer 模型。该产品用于大规模训练 Transformer 语言模型的持续研究。我们使用混合精度,高效的模型并行和数据并行,以及多节点的 Transformer 模型(如 GPT、BERT 和 T5)的预训练。
基于 Transformer 的预训练语言模型系列
Qwen1.5 是基于 Transformer 架构的解码器语言模型系列,包括不同规模的模型。具有 SwiGLU 激活、注意力 QKV 偏置、组查询注意力等特性。支持多种自然语言和代码。推荐进行后续训练,如 SFT、RLHF 等。定价免费。
智能编码助手,提升开发效率
通义灵码是一款专为开发者设计的智能编码助手,支持多种开发环境,包括JetBrains IDEs、Visual Studio Code、Visual Studio等。它通过集成先进的AI技术,帮助开发者快速完成编码任务,提高编码效率和质量,适用于各种编程语言和开发场景。
基于Transformer的文本到音乐生成模型
MusiConGen是一个基于Transformer的文本到音乐生成模型,它通过时间条件增强对节奏和和弦的控制。该模型从预训练的MusicGen-melody框架中微调而来。它使用符号表示的和弦和节奏控制,并结合五种不同风格的文本描述来生成样本。生成样本的和弦通过BTC和弦识别模型进行估计,如论文中所述。
扩展Transformer模型处理无限长输入
Google开发的“Infini-attention”技术旨在扩展基于Transformer的大语言模型以处理无限长的输入,通过压缩记忆机制实现无限长输入处理,并在多个长序列任务上取得优异表现。技术方法包括压缩记忆机制、局部与长期注意力的结合和流式处理能力等。实验结果显示在长上下文语言建模、密钥上下文块检索和书籍摘要任务上的性能优势。
基于Transformer的作者表示学习模型
LLNL/LUAR是一个基于Transformer的模型,用于学习作者表示,主要用于作者验证的跨领域迁移研究。该模型在EMNLP 2021论文中被介绍,研究了在一个领域学习的作者表示是否能迁移到另一个领域。模型的主要优点包括能够处理大规模数据集,并在多个不同的领域(如亚马逊评论、同人小说短篇故事和Reddit评论)中进行零样本迁移。产品背景信息包括其在跨领域作者验证领域的创新性研究,以及在自然语言处理领域的应用潜力。该产品是开源的,遵循Apache-2.0许可协议,可以免费使用。
Transformer Debugger是由OpenAI的Superalignment团队开发的用于调查小型语言模型特定行为的工具
Transformer Debugger结合了自动化可解释性和稀疏自编码器技术,支持在编写代码之前进行快速探索,并能够在前向传递中进行干预,以观察其如何影响特定行为。它通过识别对行为有贡献的特定组件(神经元、注意力头、自编码器潜在表示),展示自动生成的解释来说明这些组件为何强烈激活,并追踪组件间的连接以帮助发现电路。
先进的混合SSM-Transformer指令遵循基础模型
Jamba-1.5是ai21labs推出的一系列先进的混合SSM-Transformer指令遵循基础模型,这些模型在文本生成领域具有创新性和高效性。它们能够理解和执行复杂的指令,生成高质量的文本内容,对提升写作效率和质量有着重要的作用。
快速比较顶尖语言模型,无需编码
KraspAI Kompass是一个用于比较顶尖语言模型的平台,用户可以在不到一分钟的时间内测试各种提示,包括闭源和开源模型。用户可以创建自己独特的测试套件,并无需编码即可比较模型。该产品分为免费版、专业版和企业定制版,用户可以根据自己的需求选择合适的版本。
实现增强物体跟踪的Transformer模型
CoTracker是一个基于Transformer的模型,可以在视频序列中联合跟踪稠密点。它与大多数现有的状态最先进的方法不同,后者独立跟踪点,而忽略了它们之间的相关性。我们展示了联合跟踪可以显著提高跟踪精度和鲁棒性。我们还提供了若干技术创新,包括虚拟轨迹的概念,这使CoTracker可以联合跟踪7万个点。此外,CoTracker因果地操作在短时间窗口上(因此适合在线任务),但通过在更长的视频序列上展开窗口进行训练,这使并显著改进了长期跟踪。我们展示了定性印象深刻的跟踪结果,其中点甚至在遮挡或离开视野时也可以跟踪很长时间。从定量上看,CoTracker在标准基准测试上优于所有最近的跟踪器,通常优势显著。
分析Transformer语言模型的内部工作机制
LLM Transparency Tool(LLM-TT)是一个开源的交互式工具包,用于分析基于Transformer的语言模型的内部工作机制。它允许用户选择模型、添加提示并运行推理,通过可视化的方式展示模型的注意力流动和信息传递路径。该工具旨在提高模型的透明度,帮助研究人员和开发者更好地理解和改进语言模型。
基于Transformer的通用领域文本到图像生成
CogView是一个用于通用领域文本到图像生成的预训练Transformer模型。该模型包含410亿参数,能够生成高质量、多样化的图像。模型的训练思路采用抽象到具体的方式,先 pretrain 获得通用知识,然后 finetune 在特定域生成图像,能显著提升生成质量。值得一提的是,论文还提出了两种帮助大模型稳定训练的技巧:PB-relax 和 Sandwich-LN。
基于Transformer实现的ViTPose模型集合
ViTPose是一系列基于Transformer架构的人体姿态估计模型。它利用Transformer的强大特征提取能力,为人体姿态估计任务提供了简单而有效的基线。ViTPose模型在多个数据集上表现出色,具有较高的准确性和效率。该模型由悉尼大学社区维护和更新,提供了多种不同规模的版本,以满足不同应用场景的需求。在Hugging Face平台上,ViTPose模型以开源的形式供用户使用,用户可以方便地下载和部署这些模型,进行人体姿态估计相关的研究和应用开发。
Masked Diffusion Transformer是图像合成的最新技术,为ICCV 2023的SOTA(State of the Art)
MDT通过引入掩码潜在模型方案来显式增强扩散概率模型(DPMs)在图像中对象部分之间关系学习的能力。MDT在训练期间在潜在空间中操作,掩蔽某些标记,然后设计一个不对称的扩散变换器来从未掩蔽的标记中预测掩蔽的标记,同时保持扩散生成过程。MDTv2进一步通过更有效的宏网络结构和训练策略提高了MDT的性能。
© 2025 AIbase 备案号:闽ICP备08105208号-14