需求人群:
"ACE的目标受众是视觉内容创作者、编辑和研究人员,包括但不限于设计师、艺术家、游戏开发者和机器学习工程师。ACE为他们提供了一个统一的平台,可以轻松地生成和编辑各种视觉内容,无需依赖多个不同的工具或模型。"
使用场景示例:
设计师使用ACE创建独特的艺术作品
游戏开发者利用ACE生成游戏内的场景和角色
研究人员使用ACE进行视觉生成领域的实验和研究
产品特色:
支持多种视觉生成任务的联合训练
引入Long-context Condition Unit (LCU)作为统一的条件格式
提出基于Transformer的扩散模型
高效的数据收集方法,解决训练数据缺乏的问题
利用多模态大型语言模型生成准确的文本指令
发布手动标注的图像对基准,用于评估模型性能
在视觉生成领域具有显著的性能优势
使用教程:
访问ACE的官方网站或下载APP
注册并登录账户
选择创建新的视觉内容或编辑现有图像
输入或上传Long-context Condition Unit (LCU)条件格式
选择所需的视觉生成或编辑任务
等待模型处理并生成结果
下载或进一步编辑生成的视觉内容
浏览量:58
最新流量情况
月访问量
70.03k
平均访问时长
00:00:23
每次访问页数
1.11
跳出率
61.49%
流量来源
直接访问
41.12%
自然搜索
21.24%
邮件
0.09%
外链引荐
15.04%
社交媒体
21.77%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
巴西
7.74%
中国
6.89%
德国
11.72%
美国
21.78%
越南
7.06%
定制化漫画生成模型,连接多模态LLMs和扩散模型。
DiffSensei是一个结合了多模态大型语言模型(LLMs)和扩散模型的定制化漫画生成模型。它能够根据用户提供的文本提示和角色图像,生成可控制的黑白漫画面板,并具有灵活的角色适应性。这项技术的重要性在于它将自然语言处理与图像生成相结合,为漫画创作和个性化内容生成提供了新的可能性。DiffSensei模型以其高质量的图像生成、多样化的应用场景以及对资源的高效利用而受到关注。目前,该模型在GitHub上公开,可以免费下载使用,但具体的使用可能需要一定的计算资源。
多模态视觉语言模型
MouSi是一种多模态视觉语言模型,旨在解决当前大型视觉语言模型(VLMs)面临的挑战。它采用集成专家技术,将个体视觉编码器的能力进行协同,包括图像文本匹配、OCR、图像分割等。该模型引入融合网络来统一处理来自不同视觉专家的输出,并在图像编码器和预训练LLMs之间弥合差距。此外,MouSi还探索了不同的位置编码方案,以有效解决位置编码浪费和长度限制的问题。实验结果表明,具有多个专家的VLMs表现出比孤立的视觉编码器更出色的性能,并随着整合更多专家而获得显著的性能提升。
一个集成视觉理解和生成的多模态生成模型。
Liquid 是一个自回归生成模型,通过将图像分解为离散代码并与文本标记共享特征空间,促进视觉理解和文本生成的无缝集成。此模型的主要优点在于无需外部预训练的视觉嵌入,减少了对资源的依赖,同时通过规模法则发现了理解与生成任务之间的相互促进效应。
基于孪生多模态扩散变换器的创意布局到图像生成技术
CreatiLayout是一种创新的布局到图像生成技术,利用孪生多模态扩散变换器(Siamese Multimodal Diffusion Transformer)来实现高质量和细粒度可控的图像生成。该技术能够精确渲染复杂的属性,如颜色、纹理、形状、数量和文本,适用于需要精确布局和图像生成的应用场景。其主要优点包括高效的布局引导集成、强大的图像生成能力和大规模数据集的支持。CreatiLayout由复旦大学和字节跳动公司联合开发,旨在推动图像生成技术在创意设计领域的应用。
多模态大型语言模型,融合视觉与语言理解。
InternVL2_5-26B是一个先进的多模态大型语言模型(MLLM),在InternVL 2.0的基础上,通过引入显著的训练和测试策略增强以及数据质量提升,进一步发展而来。该模型保持了其前身的“ViT-MLP-LLM”核心模型架构,并集成了新增量预训练的InternViT与各种预训练的大型语言模型(LLMs),例如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。InternVL 2.5系列模型在多模态任务中展现出卓越的性能,尤其在视觉感知和多模态能力方面。
字节跳动自研大模型,提供多模态能力
豆包大模型是字节跳动推出的自研大模型,通过内部50+业务场景实践验证,每日万亿级tokens大使用量持续打磨,提供多模态能力,以优质模型效果为企业打造丰富的业务体验。产品家族包括多种模型,如通用模型、视频生成、文生图、图生图、同声传译等,满足不同业务需求。
视觉定位GUI指令的多模态模型
Aria-UI是一个专为GUI指令视觉定位而设计的大规模多模态模型。它采用纯视觉方法,不依赖辅助输入,能够适应多样化的规划指令,并通过合成多样化、高质量的指令样本来适应不同的任务。Aria-UI在离线和在线代理基准测试中均创下新的最高记录,超越了仅依赖视觉和依赖AXTree的基线。
基于文本生成图像的多模态扩散变换器模型
Stable Diffusion 3.5 Medium是一个基于文本到图像的生成模型,由Stability AI开发,具有改进的图像质量、排版、复杂提示理解和资源效率。该模型使用了三个固定的预训练文本编码器,通过QK-规范化提高训练稳定性,并在前12个变换层中引入双注意力块。它在多分辨率图像生成、一致性和各种文本到图像任务的适应性方面表现出色。
多模态和多任务模型训练框架
4M是一个用于训练多模态和多任务模型的框架,能够处理多种视觉任务,并且能够进行多模态条件生成。该模型通过实验分析展示了其在视觉任务上的通用性和可扩展性,为多模态学习在视觉和其他领域的进一步探索奠定了基础。
多模态语言模型的视觉推理工具
Visual Sketchpad 是一种为多模态大型语言模型(LLMs)提供视觉草图板和绘图工具的框架。它允许模型在进行规划和推理时,根据自己绘制的视觉工件进行操作。与以往使用文本作为推理步骤的方法不同,Visual Sketchpad 使模型能够使用线条、框、标记等更接近人类绘图方式的元素进行绘图,从而更好地促进推理。此外,它还可以在绘图过程中使用专家视觉模型,例如使用目标检测模型绘制边界框,或使用分割模型绘制掩码,以进一步提高视觉感知和推理能力。
先进的多模态理解模型,融合视觉与语言能力。
DeepSeek-VL2是一系列大型Mixture-of-Experts视觉语言模型,相较于前代DeepSeek-VL有显著提升。该模型系列在视觉问答、光学字符识别、文档/表格/图表理解以及视觉定位等任务上展现出卓越的能力。DeepSeek-VL2包含三个变体:DeepSeek-VL2-Tiny、DeepSeek-VL2-Small和DeepSeek-VL2,分别拥有1.0B、2.8B和4.5B激活参数。DeepSeek-VL2在激活参数相似或更少的情况下,与现有的开源密集和MoE基础模型相比,达到了竞争性或最先进的性能。
多模态视觉任务的高效转换模型
LLaVA-OneVision是一款由字节跳动公司与多所大学合作开发的多模态大型模型(LMMs),它在单图像、多图像和视频场景中推动了开放大型多模态模型的性能边界。该模型的设计允许在不同模态/场景之间进行强大的迁移学习,展现出新的综合能力,特别是在视频理解和跨场景能力方面,通过图像到视频的任务转换进行了演示。
多模态大型语言模型,提升视觉与语言的交互能力
InternVL2_5-8B-MPO-AWQ是OpenGVLab推出的一款多模态大型语言模型,它基于InternVL2.5系列,并采用混合偏好优化(Mixed Preference Optimization, MPO)技术。该模型在视觉和语言的理解与生成方面展现了卓越的性能,尤其在多模态任务中表现出色。它通过结合视觉部分InternViT和语言部分InternLM或Qwen,使用随机初始化的MLP投影器进行增量预训练,实现了对图像和文本的深入理解与交互。该技术的重要性在于它能够处理包括单图像、多图像以及视频数据在内的多种数据类型,为多模态人工智能领域提供了新的解决方案。
支持同时理解和生成图像的多模态大型语言模型
Mini-Gemini是一个多模态视觉语言模型,支持从2B到34B的系列密集和MoE大型语言模型,同时具备图像理解、推理和生成能力。它基于LLaVA构建,利用双视觉编码器提供低分辨率视觉嵌入和高分辨率候选区域,采用补丁信息挖掘在高分辨率区域和低分辨率视觉查询之间进行补丁级挖掘,将文本与图像融合用于理解和生成任务。支持包括COCO、GQA、OCR-VQA、VisualGenome等多个视觉理解基准测试。
前沿级多模态大型语言模型
NVLM 1.0是NVIDIA ADLR推出的前沿级多模态大型语言模型系列,它在视觉-语言任务上达到了业界领先水平,与顶级专有模型和开放访问模型相媲美。该模型在多模态训练后,甚至在纯文本任务上的准确性上也有所提高。NVLM 1.0的开源模型权重和Megatron-Core训练代码为社区提供了宝贵的资源。
先进的多模态图像生成模型,结合文本提示和视觉参考生成高质量图像。
Qwen2vl-Flux是一个结合了Qwen2VL视觉语言理解能力的FLUX框架的先进多模态图像生成模型。该模型擅长基于文本提示和视觉参考生成高质量图像,提供卓越的多模态理解和控制。产品背景信息显示,Qwen2vl-Flux集成了Qwen2VL的视觉语言能力,增强了FLUX的图像生成精度和上下文感知能力。其主要优点包括增强的视觉语言理解、多种生成模式、结构控制、灵活的注意力机制和高分辨率输出。
多模态大型语言模型,提升视觉与语言的交互能力。
InternVL2_5-26B-MPO是一个多模态大型语言模型(MLLM),它在InternVL2.5的基础上,通过混合偏好优化(Mixed Preference Optimization, MPO)进一步提升了模型性能。该模型能够处理包括图像、文本在内的多模态数据,广泛应用于图像描述、视觉问答等场景。它的重要性在于能够理解和生成与图像内容紧密相关的文本,推动了多模态人工智能的边界。产品背景信息包括其在多模态任务中的卓越性能,以及在OpenCompass Learderboard中的评估结果。该模型为研究者和开发者提供了强大的工具,以探索和实现多模态人工智能的潜力。
最先进的视觉语言模型,支持多模态理解和文本生成。
Qwen2-VL-2B是Qwen-VL模型的最新迭代,代表了近一年的创新成果。该模型在视觉理解基准测试中取得了最先进的性能,包括MathVista、DocVQA、RealWorldQA、MTVQA等。它能够理解超过20分钟的视频,为基于视频的问题回答、对话、内容创作等提供高质量的支持。Qwen2-VL还支持多语言,除了英语和中文,还包括大多数欧洲语言、日语、韩语、阿拉伯语、越南语等。模型架构更新包括Naive Dynamic Resolution和Multimodal Rotary Position Embedding (M-ROPE),增强了其多模态处理能力。
创新的多模态链式思维框架,提升视觉推理能力
Cantor是一个多模态链式思维(CoT)框架,它通过感知决策架构,将视觉上下文获取与逻辑推理相结合,解决复杂的视觉推理任务。Cantor首先作为一个决策生成器,整合视觉输入来分析图像和问题,确保与实际情境更紧密的对齐。此外,Cantor利用大型语言模型(MLLMs)的高级认知功能,作为多面专家,推导出更高层次的信息,增强CoT生成过程。Cantor在两个复杂的视觉推理数据集上进行了广泛的实验,证明了所提出框架的有效性,无需微调或真实理由,就显著提高了多模态CoT性能。
一张图生成多视角扩散基础模型
Zero123++是一个单图生成多视角一致性扩散基础模型。它可以从单个输入图像生成多视角图像,具有稳定的扩散VAE。您可以使用它来生成具有灰色背景的不透明图像。您还可以使用它来运行深度ControlNet。模型和源代码均可在官方网站上获得。
多模态图像生成模型
Instruct-Imagen是一个多模态图像生成模型,通过引入多模态指令,实现对异构图像生成任务的处理,并在未知任务中实现泛化。该模型利用自然语言整合不同的模态(如文本、边缘、风格、主题等),标准化丰富的生成意图。通过在预训练文本到图像扩散模型上进行两阶段框架的微调,采用检索增强训练和多样的图像生成任务微调,使得该模型在各种图像生成数据集上的人工评估结果表明,其在领域内与先前的任务特定模型相匹配或超越,并展现出对未知和更复杂任务的有希望的泛化能力。
使用预训练扩散模型制作视觉错觉
Visual Anagrams是一种简单的、零样本方法,用于生成多视角视觉错觉。我们展示了理论和实践证明,我们的方法支持广泛的变换,包括旋转、翻转、颜色反转、倾斜、拼图重排和随机排列等。我们的方法使用预训练扩散模型来估计图像的不同视角或变换中的噪声,并将其对齐并平均。然后使用这个平均噪声估计来进行扩散步骤。使用Visual Anagrams,您可以制作出多种多视角视觉错觉。
多模态自回归模型,擅长文本生成图像
Lumina-mGPT是一个多模态自回归模型家族,能够执行各种视觉和语言任务,特别是在从文本描述生成灵活的逼真图像方面表现突出。该模型基于xllmx模块实现,支持以LLM为中心的多模态任务,适用于深度探索和快速熟悉模型能力。
开源多模态预训练模型,具备中英双语对话能力。
GLM-4V-9B是智谱AI推出的新一代预训练模型,支持1120*1120高分辨率下的中英双语多轮对话,以及视觉理解能力。在多模态评测中,GLM-4V-9B展现出超越GPT-4-turbo-2024-04-09、Gemini 1.0 Pro、Qwen-VL-Max和Claude 3 Opus的卓越性能。
MiniCPM-o 2.6是一个强大的多模态大型语言模型,适用于视觉、语音和多模态直播。
MiniCPM-o 2.6是MiniCPM-o系列中最新且功能最强大的模型。该模型基于SigLip-400M、Whisper-medium-300M、ChatTTS-200M和Qwen2.5-7B构建,拥有8B参数。它在视觉理解、语音交互和多模态直播方面表现出色,支持实时语音对话和多模态直播功能。该模型在开源社区中表现优异,超越了多个知名模型。其优势在于高效的推理速度、低延迟、低内存和功耗,能够在iPad等终端设备上高效支持多模态直播。此外,MiniCPM-o 2.6易于使用,支持多种使用方式,包括llama.cpp的CPU推理、int4和GGUF格式的量化模型、vLLM的高吞吐量推理等。
多模态语言模型
SpeechGPT是一种多模态语言模型,具有内在的跨模态对话能力。它能够感知并生成多模态内容,遵循多模态人类指令。SpeechGPT-Gen是一种扩展了信息链的语音生成模型。SpeechAgents是一种具有多模态多代理系统的人类沟通模拟。SpeechTokenizer是一种统一的语音标记器,适用于语音语言模型。这些模型和数据集的发布日期和相关信息均可在官方网站上找到。
先进多模态大型语言模型系列
InternVL 2.5是一系列先进的多模态大型语言模型(MLLM),在InternVL 2.0的基础上,通过引入显著的训练和测试策略增强以及数据质量提升,进一步发展而来。该模型系列在视觉感知和多模态能力方面进行了优化,支持包括图像、文本到文本的转换在内的多种功能,适用于需要处理视觉和语言信息的复杂任务。
© 2025 AIbase 备案号:闽ICP备08105208号-14