需求人群:
"4M模型的目标受众是计算机视觉和机器学习领域的研究人员和开发者,特别是那些对多模态数据处理和生成模型感兴趣的专业人士。该技术可以应用于图像和视频分析、内容创作、数据增强和多模态交互等场景。"
使用场景示例:
使用4M模型从RGB图像生成深度图和表面法线。
利用4M进行图像编辑,如根据部分输入重构完整的RGB图像。
在多模态检索中,使用4M模型根据文本描述检索相应的图像。
产品特色:
多模态和多任务训练方案,能够预测或生成任何模态。
通过将模态转换为离散标记序列,可以在统一的Transformer编码器-解码器上训练。
支持从部分输入进行预测,实现多模态链式生成。
能够根据任意子集的其他模态生成任何模态,实现自我一致的预测。
支持细粒度的多模态生成和编辑任务,如语义分割或深度图。
可进行可控的多模态生成,通过不同条件的权重控制生成输出。
支持多模态检索,通过预测DINOv2和ImageBind模型的全局嵌入来实现。
使用教程:
访问4M的GitHub仓库以获取代码和预训练模型。
根据文档说明安装所需的依赖项和环境。
下载并加载预训练的4M模型。
准备输入数据,可以是文本、图像或其他模态。
根据需要选择生成任务或检索任务。
运行模型并观察结果,根据需要调整参数。
对生成的输出进行后处理,如将生成的标记转换回图像或其他模态。
浏览量:36
最新流量情况
月访问量
51
平均访问时长
00:00:00
每次访问页数
1.02
跳出率
81.68%
流量来源
直接访问
22.41%
自然搜索
44.69%
邮件
0.09%
外链引荐
31.39%
社交媒体
1.18%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
瑞士
100.00%
多模态和多任务模型训练框架
4M是一个用于训练多模态和多任务模型的框架,能够处理多种视觉任务,并且能够进行多模态条件生成。该模型通过实验分析展示了其在视觉任务上的通用性和可扩展性,为多模态学习在视觉和其他领域的进一步探索奠定了基础。
多模态语言模型预测网络
Honeybee是一个适用于多模态语言模型的局部性增强预测器。它能够提高多模态语言模型在不同下游任务上的性能,如自然语言推理、视觉问答等。Honeybee的优势在于引入了局部性感知机制,可以更好地建模输入样本之间的依赖关系,从而增强多模态语言模型的推理和问答能力。
统一的多模态生成模型
Unified-IO 2是一个统一的多模态生成模型,能够理解和生成图像、文本、音频和动作。它使用单个编码器-解码器Transformer模型,将不同模式(图像、文本、音频、动作等)的输入和输出都表示为一个共享的语义空间进行处理。该模型从头开始在大规模的多模态预训练语料上进行训练,使用了多模态的去噪目标进行优化。为了学会广泛的技能,该模型还在120个现有数据集上进行微调,这些数据集包含提示和数据增强。Unified-IO 2在GRIT基准测试中达到了最先进的性能,在30多个基准测试中都取得了强劲的结果,包括图像生成和理解、文本理解、视频和音频理解以及机器人操作。
字节跳动自研大模型,提供多模态能力
豆包大模型是字节跳动推出的自研大模型,通过内部50+业务场景实践验证,每日万亿级tokens大使用量持续打磨,提供多模态能力,以优质模型效果为企业打造丰富的业务体验。产品家族包括多种模型,如通用模型、视频生成、文生图、图生图、同声传译等,满足不同业务需求。
基于 Transformer 的图像识别模型
Google Vision Transformer 是一款基于 Transformer 编码器的图像识别模型,使用大规模图像数据进行预训练,可用于图像分类等任务。该模型在 ImageNet-21k 数据集上进行了预训练,并在 ImageNet 数据集上进行了微调,具备良好的图像特征提取能力。该模型通过将图像切分为固定大小的图像块,并线性嵌入这些图像块来处理图像数据。同时,模型在输入序列前添加了位置编码,以便在 Transformer 编码器中处理序列数据。用户可以通过在预训练的编码器之上添加线性层进行图像分类等任务。Google Vision Transformer 的优势在于其强大的图像特征学习能力和广泛的适用性。该模型免费提供使用。
多模态长篇故事生成模型
SEED-Story是一个基于大型语言模型(MLLM)的多模态长篇故事生成模型,能够根据用户提供的图片和文本生成丰富、连贯的叙事文本和风格一致的图片。它代表了人工智能在创意写作和视觉艺术领域的前沿技术,具有生成高质量、多模态故事内容的能力,为创意产业提供了新的可能性。
多模态大型语言模型,融合视觉与语言理解。
InternVL2_5-26B是一个先进的多模态大型语言模型(MLLM),在InternVL 2.0的基础上,通过引入显著的训练和测试策略增强以及数据质量提升,进一步发展而来。该模型保持了其前身的“ViT-MLP-LLM”核心模型架构,并集成了新增量预训练的InternViT与各种预训练的大型语言模型(LLMs),例如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。InternVL 2.5系列模型在多模态任务中展现出卓越的性能,尤其在视觉感知和多模态能力方面。
情商智商俱佳的多模态大模型
西湖大模型是心辰智能云推出的一款具有高情商和智商的多模态大模型,它能够处理包括文本、图像、声音等多种数据类型,为用户提供智能对话、写作、绘画、语音等AI服务。该模型通过先进的人工智能算法,能够理解和生成自然语言,适用于多种场景,如心理咨询、内容创作、客户服务等,具有高度的定制性和灵活性。西湖大模型的推出,标志着心辰智能云在AI领域的技术实力和创新能力,为用户提供了更加丰富和高效的智能服务体验。
多模态图像生成模型
Instruct-Imagen是一个多模态图像生成模型,通过引入多模态指令,实现对异构图像生成任务的处理,并在未知任务中实现泛化。该模型利用自然语言整合不同的模态(如文本、边缘、风格、主题等),标准化丰富的生成意图。通过在预训练文本到图像扩散模型上进行两阶段框架的微调,采用检索增强训练和多样的图像生成任务微调,使得该模型在各种图像生成数据集上的人工评估结果表明,其在领域内与先前的任务特定模型相匹配或超越,并展现出对未知和更复杂任务的有希望的泛化能力。
多模态自回归模型,擅长文本生成图像
Lumina-mGPT是一个多模态自回归模型家族,能够执行各种视觉和语言任务,特别是在从文本描述生成灵活的逼真图像方面表现突出。该模型基于xllmx模块实现,支持以LLM为中心的多模态任务,适用于深度探索和快速熟悉模型能力。
深入理解Transformer模型的可视化工具
Transformer Explainer是一个致力于帮助用户深入理解Transformer模型的在线可视化工具。它通过图形化的方式展示了Transformer模型的各个组件,包括自注意力机制、前馈网络等,让用户能够直观地看到数据在模型中的流动和处理过程。该工具对于教育和研究领域具有重要意义,可以帮助学生和研究人员更好地理解自然语言处理领域的先进技术。
多模态语言模型
SpeechGPT是一种多模态语言模型,具有内在的跨模态对话能力。它能够感知并生成多模态内容,遵循多模态人类指令。SpeechGPT-Gen是一种扩展了信息链的语音生成模型。SpeechAgents是一种具有多模态多代理系统的人类沟通模拟。SpeechTokenizer是一种统一的语音标记器,适用于语音语言模型。这些模型和数据集的发布日期和相关信息均可在官方网站上找到。
多模态AI模型,图像理解与生成兼备
Mini-Gemini是由香港中文大学终身教授贾佳亚团队开发的多模态模型,具备精准的图像理解能力和高质量的训练数据。该模型结合图像推理和生成,提供不同规模的版本,性能与GPT-4和DALLE3相媲美。Mini-Gemini采用Gemini的视觉双分支信息挖掘方法和SDXL技术,通过卷积网络编码图像并利用Attention机制挖掘信息,同时结合LLM生成文本链接两个模型。
一个集成视觉理解和生成的多模态生成模型。
Liquid 是一个自回归生成模型,通过将图像分解为离散代码并与文本标记共享特征空间,促进视觉理解和文本生成的无缝集成。此模型的主要优点在于无需外部预训练的视觉嵌入,减少了对资源的依赖,同时通过规模法则发现了理解与生成任务之间的相互促进效应。
定制化漫画生成模型,连接多模态LLMs和扩散模型。
DiffSensei是一个结合了多模态大型语言模型(LLMs)和扩散模型的定制化漫画生成模型。它能够根据用户提供的文本提示和角色图像,生成可控制的黑白漫画面板,并具有灵活的角色适应性。这项技术的重要性在于它将自然语言处理与图像生成相结合,为漫画创作和个性化内容生成提供了新的可能性。DiffSensei模型以其高质量的图像生成、多样化的应用场景以及对资源的高效利用而受到关注。目前,该模型在GitHub上公开,可以免费下载使用,但具体的使用可能需要一定的计算资源。
多模态文本到图像生成模型
EMMA是一个基于最前沿的文本到图像扩散模型ELLA构建的新型图像生成模型,能够接受多模态提示,通过创新的多模态特征连接器设计,有效整合文本和补充模态信息。该模型通过冻结原始T2I扩散模型的所有参数,并仅调整一些额外层,揭示了预训练的T2I扩散模型可以秘密接受多模态提示的有趣特性。EMMA易于适应不同的现有框架,是生成个性化和上下文感知图像甚至视频的灵活有效工具。
前沿的多模态大型语言模型
NVLM-D-72B是NVIDIA推出的一款多模态大型语言模型,专注于视觉-语言任务,并且通过多模态训练提升了文本性能。该模型在视觉-语言基准测试中取得了与业界领先模型相媲美的成绩。
一种用于图像生成的模型。
IPAdapter-Instruct是Unity Technologies开发的一种图像生成模型,它通过在transformer模型上增加额外的文本嵌入条件,使得单一模型能够高效地执行多种图像生成任务。该模型主要优点在于能够通过'Instruct'提示,在同一工作流中灵活地切换不同的条件解释,例如风格转换、对象提取等,同时保持与特定任务模型相比的最小质量损失。
开源多模态大型语言模型系列
InternVL 2.5是基于InternVL 2.0的高级多模态大型语言模型系列,它在保持核心模型架构的同时,在训练和测试策略以及数据质量方面引入了显著的增强。该模型深入探讨了模型扩展与性能之间的关系,系统地探索了视觉编码器、语言模型、数据集大小和测试时配置的性能趋势。通过在包括多学科推理、文档理解、多图像/视频理解、现实世界理解、多模态幻觉检测、视觉定位、多语言能力和纯语言处理在内的广泛基准测试中进行的广泛评估,InternVL 2.5展现出了与GPT-4o和Claude-3.5-Sonnet等领先商业模型相媲美的竞争力。特别是,该模型是第一个在MMMU基准测试中超过70%的开源MLLM,通过链式思考(CoT)推理实现了3.7个百分点的提升,并展示了测试时扩展的强大潜力。
多模态语音大型语言模型
fixie-ai/ultravox-v0_4_1-llama-3_1-8b是一个基于预训练的Llama3.1-8B-Instruct和whisper-large-v3-turbo的大型语言模型,能够处理语音和文本输入,生成文本输出。该模型通过特殊的<|audio|>伪标记将输入音频转换为嵌入,并生成输出文本。未来版本计划扩展标记词汇以支持生成语义和声学音频标记,进而可以用于声码器产生语音输出。该模型在翻译评估中表现出色,且没有偏好调整,适用于语音代理、语音到语音翻译、语音分析等场景。
小型多模态模型,支持图像和文本生成
Fuyu-8B是由Adept AI训练的多模态文本和图像转换模型。它具有简化的架构和训练过程,易于理解、扩展和部署。它专为数字代理设计,可以支持任意图像分辨率,回答关于图表和图形的问题,回答基于UI的问题,并对屏幕图像进行细粒度定位。它的响应速度很快,可以在100毫秒内处理大型图像。尽管针对我们的用例进行了优化,但它在标准图像理解基准测试中表现良好,如视觉问答和自然图像字幕。请注意,我们发布的模型是一个基础模型,我们希望您根据具体的用例进行微调,例如冗长的字幕或多模态聊天。在我们的经验中,该模型对于少样本学习和各种用例的微调都表现良好。
多模态综合理解与创作
DreamLLM是一个学习框架,首次实现了多模态大型语言模型(LLM)在多模态理解和创作之间的协同效应。它通过直接在原始多模态空间中进行采样,生成语言和图像的后验模型。这种方法避免了像CLIP这样的外部特征提取器所固有的限制和信息损失,从而获得了更全面的多模态理解。DreamLLM还通过建模文本和图像内容以及无结构布局的原始交叉文档,有效地学习了所有条件、边缘和联合多模态分布。因此,DreamLLM是第一个能够生成自由形式交叉内容的MLLM。全面的实验证明了DreamLLM作为零样本多模态通才的卓越性能,充分利用了增强的学习协同效应。
先进多模态大型语言模型系列
InternVL 2.5是一系列先进的多模态大型语言模型(MLLM),在InternVL 2.0的基础上,通过引入显著的训练和测试策略增强以及数据质量提升,进一步发展而来。该模型系列在视觉感知和多模态能力方面进行了优化,支持包括图像、文本到文本的转换在内的多种功能,适用于需要处理视觉和语言信息的复杂任务。
多模态语音大型语言模型
fixie-ai/ultravox-v0_4_1-llama-3_1-70b是一个基于预训练的Llama3.1-70B-Instruct和whisper-large-v3-turbo的大型语言模型,能够处理语音和文本输入,生成文本输出。该模型通过特殊伪标记<|audio|>将输入音频转换为嵌入,并与文本提示合并后生成输出文本。Ultravox的开发旨在扩展语音识别和文本生成的应用场景,如语音代理、语音到语音翻译和口语音频分析等。该模型遵循MIT许可,由Fixie.ai开发。
大型多模态模型中视频理解的探索
Apollo是一个专注于视频理解的先进大型多模态模型家族。它通过系统性地探索视频-LMMs的设计空间,揭示了驱动性能的关键因素,提供了优化模型性能的实用见解。Apollo通过发现'Scaling Consistency',使得在较小模型和数据集上的设计决策能够可靠地转移到更大的模型上,大幅降低计算成本。Apollo的主要优点包括高效的设计决策、优化的训练计划和数据混合,以及一个新型的基准测试ApolloBench,用于高效评估。
多模态视觉语言模型
MouSi是一种多模态视觉语言模型,旨在解决当前大型视觉语言模型(VLMs)面临的挑战。它采用集成专家技术,将个体视觉编码器的能力进行协同,包括图像文本匹配、OCR、图像分割等。该模型引入融合网络来统一处理来自不同视觉专家的输出,并在图像编码器和预训练LLMs之间弥合差距。此外,MouSi还探索了不同的位置编码方案,以有效解决位置编码浪费和长度限制的问题。实验结果表明,具有多个专家的VLMs表现出比孤立的视觉编码器更出色的性能,并随着整合更多专家而获得显著的性能提升。
多模态原生混合专家模型
Aria是一个多模态原生混合专家模型,具有强大的多模态、语言和编码任务性能。它在视频和文档理解方面表现出色,支持长达64K的多模态输入,能够在10秒内描述一个256帧的视频。Aria模型的参数量为25.3B,能够在单个A100(80GB)GPU上使用bfloat16精度进行加载。Aria的开发背景是满足对多模态数据理解的需求,特别是在视频和文档处理方面。它是一个开源模型,旨在推动多模态人工智能的发展。
© 2025 AIbase 备案号:闽ICP备08105208号-14