需求人群:
"适用于需要高质量图像合成的研究者和开发者,尤其是在图像生成和深度学习领域。"
使用场景示例:
使用MDT进行高分辨率图像的生成
在图像合成任务中实现快速学习
利用MDTv2提高图像合成的FID分数
产品特色:
图像合成
掩码潜在模型方案
不对称扩散变换器
高效宏网络结构和训练策略
浏览量:77
最新流量情况
月访问量
4.85m
平均访问时长
00:06:25
每次访问页数
6.08
跳出率
35.86%
流量来源
直接访问
52.62%
自然搜索
32.72%
邮件
0.05%
外链引荐
12.34%
社交媒体
2.17%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
12.55%
德国
3.84%
印度
9.38%
俄罗斯
4.61%
美国
18.64%
最新的图像上色算法
DDColor 是最新的图像上色算法,输入一张黑白图像,返回上色处理后的彩色图像,并能够实现自然生动的上色效果。 该模型为黑白图像上色模型,输入一张黑白图像,实现端到端的全图上色,返回上色处理后的彩色图像。 模型期望使用方式和适用范围: 该模型适用于多种格式的图像输入,给定黑白图像,生成上色后的彩色图像;给定彩色图像,将自动提取灰度通道作为输入,生成重上色的图像。
一种用于生成图像的深度学习模型。
SD3-Controlnet-Canny 是一种基于深度学习的图像生成模型,它能够根据用户提供的文本提示生成具有特定风格的图像。该模型利用控制网络技术,可以更精确地控制生成图像的细节和风格,从而提高图像生成的质量和多样性。
一款基于深度学习的在线图像抠图工具
image-matting是一个基于深度学习的在线图像抠图工具,能够实现人像及通用场景下的图像抠图,可提取图像中的主体物体并输出对应的背景图、前景图及遮罩。该工具使用了模型堂的cv_unet_image-matting和cv_unet_universal-matting模型,实现了高质量的图像抠图效果。该工具提供了简单便捷的在线抠图体验,支持图片上传抠图及URL抠图两种方式,可广泛应用于图像编辑、电商平台中的人像处理等场景中。
Masked Diffusion Transformer是图像合成的最新技术,为ICCV 2023的SOTA(State of the Art)
MDT通过引入掩码潜在模型方案来显式增强扩散概率模型(DPMs)在图像中对象部分之间关系学习的能力。MDT在训练期间在潜在空间中操作,掩蔽某些标记,然后设计一个不对称的扩散变换器来从未掩蔽的标记中预测掩蔽的标记,同时保持扩散生成过程。MDTv2进一步通过更有效的宏网络结构和训练策略提高了MDT的性能。
高效图像合成的新框架
Hyper-SD是一个创新的图像合成框架,它通过轨迹分割一致性模型和低步数推理的优势,实现了高效的图像合成。该框架结合了ODE轨迹保留和重构的优势,同时通过人类反馈学习进一步提升了性能,并通过分数蒸馏技术增强了低步数生成能力。Hyper-SD在1到8步推理步骤中实现了SOTA性能,特别适合需要快速且高质量图像生成的应用场景。
AI 图像生成进入 “毫秒级” 时代,速度快、质量高。
腾讯混元图像 2.0 是腾讯最新发布的 AI 图像生成模型,显著提升了生成速度和画质。通过超高压缩倍率的编解码器和全新扩散架构,使得图像生成速度可达到毫秒级,避免了传统生成的等待时间。同时,模型通过强化学习算法与人类美学知识的结合,提升了图像的真实感和细节表现,适合设计师、创作者等专业用户使用。
高效率的高分辨率图像合成框架
Sana是一个文本到图像的框架,能够高效生成高达4096×4096分辨率的图像。它以极快的速度合成高分辨率、高质量的图像,并保持强大的文本-图像对齐,可以部署在笔记本电脑GPU上。Sana的核心设计包括深度压缩自编码器、线性扩散变换器(DiT)、仅解码器的小型语言模型作为文本编码器,以及高效的训练和采样策略。Sana-0.6B与现代大型扩散模型相比,体积小20倍,测量吞吐量快100倍以上。此外,Sana-0.6B可以部署在16GB笔记本电脑GPU上,生成1024×1024分辨率图像的时间少于1秒。Sana使得低成本的内容创作成为可能。
OMG是一个基于深度学习的图像超分辨率工具
OMG(Once More Generalization)是一个开源的图像超分辨率工具,它利用深度学习技术来提高图像的分辨率。该项目旨在通过AI模型增强图像质量,使其在放大后仍然保持清晰和细腻。
AI 图像擦除器,轻松删除照片中不需要的人、物体、文字和水印。
AI 图像擦除器是一款基于人工智能技术的工具,能够快速、简单地从照片中删除不需要的内容,提高照片的整体质量。该工具操作简便,免费使用,适用于个人和专业用户。
高分辨率图像合成的线性扩散变换器
Sana-1.6B是一个高效的高分辨率图像合成模型,它基于线性扩散变换器技术,能够生成高质量的图像。该模型由NVIDIA实验室开发,使用DC-AE技术,具有32倍的潜在空间,能够在多个GPU上运行,提供强大的图像生成能力。Sana-1.6B以其高效的图像合成能力和高质量的输出结果而闻名,是图像合成领域的重要技术。
更智能、更高效、更好用
悟空图像是国内一款可以替代AdobePhotoShop的专业图像处理软件,采用全新的设计理念和人工智能算法,让每个用户都能快速上手、快速出图。悟空图像不仅是国内首款支持50亿像素级超大图片处理,双向兼容PS文件格式,更支持全平台运行。悟空图像提供海量素材与模板,让你的创作不再从“0”开始;多达一百多种各类画笔,让创意设计更加得心应手;超多种组合特色功能,能够准确高效地实现用户办公需求。悟空图像圆你一个“创意设计大师”的梦,即使“0”基础,也能创作出专业级的效果!
AI生成图像鉴别挑战网站
AI判官是一个AI生成图像鉴别挑战的网站。它提供了普通模式、无尽模式和竞速模式三种游戏玩法。用户可以通过不同难度的游戏来提高自己分辨真实图片和AI生成图片的能力。该网站提供大量高质量的真实图片和AI生成图片作为判别素材。它的出现是对近期AI生成图片技术的一个回应,旨在提高公众的媒体识读能力。
使用线条生成深度风格图像
Line2Depth SD 1.5是一个模型,可以利用像Canny、线条、Softedge等控制网络,仅通过线条创建具有深度感的图像。在提示中添加'depth, 3d'。Lora文件名后的数字表示合并的Lora数量,每个将产生不同的结果,因此请选择一个效果较好的。
一个基于深度学习的图像和视频描述模型。
Describe Anything 模型(DAM)能够处理图像或视频的特定区域,并生成详细描述。它的主要优点在于可以通过简单的标记(点、框、涂鸦或掩码)来生成高质量的本地化描述,极大地提升了计算机视觉领域的图像理解能力。该模型由 NVIDIA 和多所大学联合开发,适合用于研究、开发和实际应用中。
利用尖端AI技术,将创意转化为高质量图像。
Flux AI 图像生成器是由Black Forest Labs开发的,基于革命性的Flux系列模型,提供尖端的文本到图像技术。该产品通过其120亿参数的模型,能够精确解读复杂的文本提示,创造出多样化、高保真的图像。Flux AI 图像生成器不仅适用于个人艺术创作,也可用于商业应用,如品牌视觉、社交媒体内容等。它提供三种不同的版本以满足不同用户的需求:Flux Pro、Flux Dev和Flux Schnell。
高分辨率图像合成
luosiallen/latent-consistency-model 是一个用于合成高分辨率图像的模型。它使用少量的推理步骤来生成具有良好一致性的图像。该模型支持自定义的输入提示和参数调整,可生成逼真的艺术品、人像等图像。
多功能大规模扩散模型,支持双向图像合成与理解。
OneDiffusion是一个多功能、大规模的扩散模型,它能够无缝支持双向图像合成和理解,覆盖多种任务。该模型预计将在12月初发布代码和检查点。OneDiffusion的重要性在于其能够处理图像合成和理解任务,这在人工智能领域是一个重要的进步,尤其是在图像生成和识别方面。产品背景信息显示,这是一个由多位研究人员共同开发的项目,其研究成果已在arXiv上发表。
基于深度学习的高质量文本到语音合成模型
F5-TTS是由SWivid团队开发的一个文本到语音合成(TTS)模型,它利用深度学习技术将文本转换为自然流畅、忠实于原文的语音输出。该模型在生成语音时,不仅追求高自然度,还注重语音的清晰度和准确性,适用于需要高质量语音合成的各种应用场景,如语音助手、有声读物制作、自动新闻播报等。F5-TTS模型在Hugging Face平台上发布,用户可以方便地下载和部署,支持多种语言和声音类型,具有很高的灵活性和可扩展性。
深度学习模型训练脚本集
x-flux是由XLabs AI团队发布的深度学习模型训练脚本集,包括LoRA和ControlNet模型。这些模型使用DeepSpeed进行训练,支持512x512和1024x1024图片尺寸,并且提供了相应的训练配置文件和示例。x-flux模型训练旨在提高图像生成的质量和效率,对于AI图像生成领域具有重要意义。
朱雀大模型检测,精准识别AI生成图像,助力内容真实性鉴别。
朱雀大模型检测是腾讯推出的一款AI检测工具,主要功能是检测图片是否由AI模型生成。它经过大量自然图片和生成图片的训练,涵盖摄影、艺术、绘画等内容,可检测多类主流文生图模型生成图片。该产品具有高精度检测、快速响应等优点,对于维护内容真实性、打击虚假信息传播具有重要意义。目前暂未明确其具体价格,但从功能来看,主要面向需要进行内容审核、鉴别真伪的机构和个人,如媒体、艺术机构等。
AI图像生成器
Stable Diffusion 是一个深度学习模型,可以从文本描述生成图像。它提供高质量的图像生成,可以根据简单的文本输入创建逼真的图像。它具有快速生成的优势,可以通过修复和扩展图像的大小来添加或替换图像的部分。Stable Diffusion XL是该模型的最新版本,使用更大的UNet骨干网络生成更高质量的图像。您可以免费在Stable Diffusion在线使用这个AI图像生成器。
基于LDM的服装驱动图像合成AI
MagicClothing是一种基于潜在扩散模型(LDM)的新型网络架构,专门用于服装驱动的图像合成任务。它能够根据文本提示生成穿着特定服装的定制化角色图像,同时确保服装细节的保留和对文本提示的忠实呈现。该系统通过服装特征提取器和自注意力融合技术,实现了高度的图像可控性,并且可以与ControlNet和IP-Adapter等其他技术结合使用,以提升角色的多样性和可控性。此外,还开发了匹配点LPIPS(MP-LPIPS)评估指标,用于评价生成图像与原始服装的一致性。
一种通过视觉上下文学习的通用图像生成框架。
VisualCloze 是一个通过视觉上下文学习的通用图像生成框架,旨在解决传统任务特定模型在多样化需求下的低效率问题。该框架不仅支持多种内部任务,还能泛化到未见过的任务,通过可视化示例帮助模型理解任务。这种方法利用了先进的图像填充模型的强生成先验,为图像生成提供了强有力的支持。
将您喜欢的图像转换为惊艳的深度动画
LeiaPix Converter是一个将任何喜欢的图像转换为令人惊叹的深度动画的工具。它通过使用AI技术,为图像添加深度效果,使图像栩栩如生。您可以选择动画长度、动画样式、运动量和焦点位置来自定义深度动画。LeiaPix Converter可用于各种场景,如社交媒体分享、电子邮件、博客和网站设计等。LeiaPix Converter免费试用,付费版提供更多高级编辑功能。
BEN2是一个基于深度学习的图像分割模型,专注于背景擦除和前景提取。
BEN2(Background Erase Network)是一个创新的图像分割模型,采用了Confidence Guided Matting(CGM)流程。它通过一个细化网络专门处理模型置信度较低的像素,从而实现更精确的抠图效果。BEN2在头发抠图、4K图像处理、目标分割和边缘细化方面表现出色。其基础模型是开源的,用户可以通过API或Web演示免费试用完整模型。该模型训练数据包括DIS5k数据集和22K专有分割数据集,能够满足多种图像处理需求。
开源文本到图像生成模型
AuraFlow v0.3是一个完全开源的基于流的文本到图像生成模型。与之前的版本AuraFlow-v0.2相比,该模型经过了更多的计算训练,并在美学数据集上进行了微调,支持各种宽高比,宽度和高度可达1536像素。该模型在GenEval上取得了最先进的结果,目前处于beta测试阶段,正在不断改进中,社区反馈非常重要。
© 2025 AIbase 备案号:闽ICP备08105208号-14