需求人群:
"该产品适合图像生成、编辑、恢复等领域的研究人员和开发者,特别是需要高效处理多任务的用户。它为用户提供了一种创新的方式,通过可视化示例来学习和生成图像,降低了对语言指令的依赖,提升了任务执行的准确性和效率。"
使用场景示例:
通过视觉提示生成目标图像。
进行图像恢复,修复损坏的图像。
实现风格转移,将一种图像的风格应用到另一种图像上。
产品特色:
支持多种内任务,包括图像生成、图像恢复、图像编辑等。
通过视觉示例实现上下文学习,增强模型的任务理解能力。
可以将多个任务统一到一步中,实现目标图像和中间结果的生成。
支持逆向生成,从目标图像推导条件。
通过 Graph200K 数据集提升任务密度,增强可转移知识。
与图像填充模型共享一致目标,降低架构修改需求。
提供灵活的输入图像拼接方式,支持不同的纵横比。
使用教程:
访问 VisualCloze 网站。
上传需要处理的图像或选择视觉示例。
选择所需的任务类型,如图像生成、恢复或编辑。
点击生成按钮,等待模型处理图像。
下载生成的图像或结果。
浏览量:185
一种通过视觉上下文学习的通用图像生成框架。
VisualCloze 是一个通过视觉上下文学习的通用图像生成框架,旨在解决传统任务特定模型在多样化需求下的低效率问题。该框架不仅支持多种内部任务,还能泛化到未见过的任务,通过可视化示例帮助模型理解任务。这种方法利用了先进的图像填充模型的强生成先验,为图像生成提供了强有力的支持。
先进的视觉基础模型,支持多种视觉和视觉-语言任务。
Florence-2是由微软开发的高级视觉基础模型,采用基于提示的方法处理广泛的视觉和视觉-语言任务。该模型能够解释简单的文本提示,执行如描述、目标检测和分割等任务。它利用包含54亿个注释的5.4亿张图像的FLD-5B数据集,精通多任务学习。模型的序列到序列架构使其在零样本和微调设置中都表现出色,证明其为有竞争力的视觉基础模型。
先进的视觉基础模型,支持多种视觉和视觉-语言任务
Florence-2-large是由微软开发的先进视觉基础模型,采用基于提示的方法处理广泛的视觉和视觉-语言任务。该模型能够解释简单的文本提示来执行如图像描述、目标检测和分割等任务。它利用包含54亿注释的5.4亿图像的FLD-5B数据集,精通多任务学习。其序列到序列的架构使其在零样本和微调设置中均表现出色,证明是一个有竞争力的视觉基础模型。
先进的视觉基础模型,支持多种视觉和视觉-语言任务
Florence-2是由微软开发的高级视觉基础模型,采用基于提示的方法处理广泛的视觉和视觉-语言任务。该模型能够解释简单的文本提示,执行诸如图像描述、目标检测和分割等任务。它利用FLD-5B数据集,包含54亿个注释,覆盖1.26亿张图像,精通多任务学习。其序列到序列的架构使其在零样本和微调设置中均表现出色,证明是一个有竞争力的视觉基础模型。
精准图像编辑,一站式满足多任务需求
Emu Edit是一款多任务图像编辑模型,通过识别和生成任务完成精准图像编辑,并在此领域内取得了最新的技术突破。Emu Edit的架构针对多任务学习进行了优化,并在众多任务上进行训练,包括基于区域的编辑、自由形式的编辑以及检测和分割等计算机视觉任务。除此之外,为了更有效地处理这多种任务,我们引入了学习到的任务嵌入概念,用于指导生成过程以正确执行编辑指令。我们的模型经过多任务训练和使用学习到的任务嵌入都能显著提升准确执行编辑指令的能力。 Emu Edit还支持对未见任务的快速适应,通过任务倒转实现少样本学习。在这个过程中,我们保持模型权重不变,仅更新任务嵌入来适应新任务。我们的实验证明,Emu Edit能够迅速适应新任务,如超分辨率、轮廓检测等。这使得在标注样本有限或计算预算有限的情况下,使用Emu Edit进行任务倒转特别有优势。 为了支持对基于指令的图像编辑模型的严格且有根据的评估,我们还收集并公开发布了一个新的基准数据集,其中包含七种不同的图像编辑任务:背景修改(background)、综合图像变化(global)、风格修改(style)、对象移除(remove)、对象添加(add)、局部修改(local)以及颜色/纹理修改(texture)。此外,为了与Emu Edit进行正确比较,我们还分享了Emu Edit在数据集上的生成结果。 Emu Edit 2023 Meta保留所有版权
先进的视觉基础模型,支持多种视觉和视觉-语言任务。
Florence-2-large-ft是由微软开发的高级视觉基础模型,使用基于提示的方法来处理广泛的视觉和视觉-语言任务。该模型能够通过简单的文本提示执行诸如图像描述、目标检测和分割等任务。它利用FLD-5B数据集,包含54亿个注释,覆盖1.26亿张图像,实现多任务学习。模型的序列到序列架构使其在零样本和微调设置中均表现出色,证明其为有竞争力的视觉基础模型。
多模态和多任务模型训练框架
4M是一个用于训练多模态和多任务模型的框架,能够处理多种视觉任务,并且能够进行多模态条件生成。该模型通过实验分析展示了其在视觉任务上的通用性和可扩展性,为多模态学习在视觉和其他领域的进一步探索奠定了基础。
统一的图像生成框架,简化多任务图像生成。
OmniGen是一个创新的扩散框架,它将多种图像生成任务统一到单一模型中,无需特定任务的网络或微调。这一技术简化了图像生成流程,提高了效率,降低了开发和维护成本。
一种统一的视觉任务基础模型。
Florence-2是一个新型的视觉基础模型,它通过统一的、基于提示的表示方式,能够处理多种计算机视觉和视觉-语言任务。它设计为接受文本提示作为任务指令,并以文本形式生成期望的结果,无论是图像描述、目标检测、定位还是分割。这种多任务学习设置需要大规模、高质量的注释数据。为此,我们共同开发了FLD-5B,它包含了54亿个综合视觉注释,涵盖1.26亿张图像,使用了自动化图像注释和模型细化的迭代策略。我们采用了序列到序列的结构来训练Florence-2,以执行多样化和全面的视觉任务。广泛的评估表明,Florence-2是一个强大的视觉基础模型竞争者,具有前所未有的零样本和微调能力。
结合视觉语音处理与大型语言模型的框架
VSP-LLM是一个结合视觉语音处理(Visual Speech Processing)与大型语言模型(LLMs)的框架,旨在通过LLMs的强大能力最大化上下文建模能力。VSP-LLM设计用于执行视觉语音识别和翻译的多任务,通过自监督视觉语音模型将输入视频映射到LLM的输入潜在空间。该框架通过提出一种新颖的去重方法和低秩适配器(LoRA),可以高效地进行训练。
连接不同语言模型和生成视觉模型进行文本到图像生成
LaVi-Bridge是一种针对文本到图像扩散模型设计的桥接模型,能够连接各种预训练的语言模型和生成视觉模型。它通过利用LoRA和适配器,提供了一种灵活的插拔式方法,无需修改原始语言和视觉模型的权重。该模型与各种语言模型和生成视觉模型兼容,可容纳不同的结构。在这一框架内,我们证明了通过整合更高级的模块(如更先进的语言模型或生成视觉模型)可以明显提高文本对齐或图像质量等能力。该模型经过大量评估,证实了其有效性。
PaliGemma 2 mix 是一款多功能的视觉语言模型,适用于多种任务和领域。
PaliGemma 2 mix 是 Google 推出的升级版视觉语言模型,属于 Gemma 家族。它能够处理多种视觉和语言任务,如图像分割、视频字幕生成、科学问题回答等。该模型提供不同大小的预训练检查点(3B、10B 和 28B 参数),可轻松微调以适应各种视觉语言任务。其主要优点是多功能性、高性能和开发者友好性,支持多种框架(如 Hugging Face Transformers、Keras、PyTorch 等)。该模型适用于需要高效处理视觉和语言任务的开发者和研究人员,能够显著提升开发效率。
先进的多模态图像生成模型,结合文本提示和视觉参考生成高质量图像。
Qwen2vl-Flux是一个结合了Qwen2VL视觉语言理解能力的FLUX框架的先进多模态图像生成模型。该模型擅长基于文本提示和视觉参考生成高质量图像,提供卓越的多模态理解和控制。产品背景信息显示,Qwen2vl-Flux集成了Qwen2VL的视觉语言能力,增强了FLUX的图像生成精度和上下文感知能力。其主要优点包括增强的视觉语言理解、多种生成模式、结构控制、灵活的注意力机制和高分辨率输出。
基于强化学习技术的视觉思考模型,理科测试行业领先
Kimi视觉思考模型k1是基于强化学习技术打造的AI模型,原生支持端到端图像理解和思维链技术,并将能力扩展到数学之外的更多基础科学领域。在数学、物理、化学等基础科学学科的基准能力测试中,k1模型的表现超过了全球标杆模型。k1模型的发布标志着AI在视觉理解和思考能力上的新突破,尤其在处理图像信息和基础科学问题上展现出色的表现。
VisionAgent是一个用于生成代码以解决视觉任务的库,支持多种LLM提供商。
VisionAgent是一个强大的工具,它利用人工智能和大语言模型(LLM)来生成代码,帮助用户快速解决视觉任务。该工具的主要优点是能够自动将复杂的视觉任务转化为可执行的代码,极大地提高了开发效率。VisionAgent支持多种LLM提供商,用户可以根据自己的需求选择不同的模型。它适用于需要快速开发视觉应用的开发者和企业,能够帮助他们在短时间内实现功能强大的视觉解决方案。VisionAgent目前是免费的,旨在为用户提供高效、便捷的视觉任务处理能力。
先进的文本生成模型,支持多样化任务
Llama-3.1-Tulu-3-8B-SFT是Tülu3模型家族中的一员,这是一个领先的指令遵循模型家族,提供完全开源的数据、代码和配方,旨在为现代后训练技术提供全面的指南。该模型不仅在聊天任务上表现出色,还在MATH、GSM8K和IFEval等多样化任务上展现了卓越的性能。
Wan2.1 是一款开源的先进大规模视频生成模型,支持多种视频生成任务。
Wan2.1 是一款开源的先进大规模视频生成模型,旨在推动视频生成技术的边界。它通过创新的时空变分自编码器(VAE)、可扩展的训练策略、大规模数据构建和自动化评估指标,显著提升了模型的性能和通用性。Wan2.1 支持多种任务,包括文本到视频、图像到视频、视频编辑等,能够生成高质量的视频内容。该模型在多个基准测试中表现优异,甚至超越了一些闭源模型。其开源特性使得研究人员和开发者可以自由使用和扩展该模型,适用于多种应用场景。
使用大型语言模型生成机器人模拟任务
GenSim利用大型语言模型生成大量的机器人模拟任务,支持目标导向生成和探索性生成两种模式,可用于多任务策略训练和任务级别泛化。使用GPT4扩展了现有基准测试10倍以上,支持超过100个任务,通过有监督微调和评估多个LLM,包括微调的GPT和Code Llama,生成机器人模拟任务的代码。最小的模拟到真实世界的适应后,预训练在GPT4生成的模拟任务上的多任务策略在真实世界中展现了更强的转移能力,超过基线25%。
学习模型间字符串关系,检查视觉世界
这篇论文系统评估了大型语言模型(LLMs)生成和识别逐渐复杂的视觉概念的能力,并展示了如何使用文本模型训练初步的视觉表示学习系统。虽然语言模型不能直接处理像素级的视觉信息,但使用代码表示图像进行研究。LLM 生成的图像虽然不像自然图像,但在图像生成和纠正方面的结果表明,准确建模字符串可以教会语言模型许多关于视觉世界的方面。此外,利用文本模型生成的图像进行自监督视觉表示学习的实验,突出了只使用 LLMs 就能训练能够对自然图像进行语义评估的视觉模型的潜力。
通过去噪生成模型进行空间推理,解决复杂分布下的视觉任务。
SRM是一种基于去噪生成模型的空间推理框架,用于处理连续变量集合的推理任务。它通过为每个未观测变量分配独立的噪声水平,逐步推断出这些变量的连续表示。该技术在处理复杂分布时表现出色,能够有效减少生成过程中的幻觉现象。SRM首次证明了去噪网络可以预测生成顺序,从而显著提高了特定推理任务的准确性。该模型由德国马普信息研究所开发,旨在推动空间推理和生成模型的研究。
视觉位置识别通过图像片段检索
Revisit Anything 是一个视觉位置识别系统,通过图像片段检索技术,能够识别和匹配不同图像中的位置。它结合了SAM(Spatial Attention Module)和DINO(Distributed Knowledge Distillation)技术,提高了视觉识别的准确性和效率。该技术在机器人导航、自动驾驶等领域具有重要的应用价值。
利用尖端AI技术,将创意转化为高质量图像。
Flux AI 图像生成器是由Black Forest Labs开发的,基于革命性的Flux系列模型,提供尖端的文本到图像技术。该产品通过其120亿参数的模型,能够精确解读复杂的文本提示,创造出多样化、高保真的图像。Flux AI 图像生成器不仅适用于个人艺术创作,也可用于商业应用,如品牌视觉、社交媒体内容等。它提供三种不同的版本以满足不同用户的需求:Flux Pro、Flux Dev和Flux Schnell。
基于Pile数据集训练的T5模型
Pile-T5是EleutherAI推出的一款自然语言处理模型,它在原有的T5模型基础上,采用了Pile数据集和LLAMA分词器进行训练,以改善对代码任务的理解能力。该模型经过了2万亿个token的训练,是原T5模型训练量的两倍。Pile-T5在多项下游任务中表现出色,尤其是在代码相关任务上。此外,EleutherAI还提供了中间检查点,以便研究人员研究模型随时间的演变。
AI驱动的图像生成器,创造视觉艺术。
Flux AI Studio的Flux AI Image Generator是由Black Forest Labs开发的AI图像生成器,基于拥有120亿参数的Flux模型,能够将文本描述转换为高质量的图像。它代表了AI图像生成技术的最新突破,提供从照片般逼真的渲染到抽象艺术的多样化风格,满足从个人艺术创作到商业应用的广泛需求。
面向大模型的智能解决方案平台,自动优化多任务。
PromptPilot 是一个智能解决方案平台,专注于大模型的优化和用户任务意图的实现。通过交互反馈,该平台能够自动优化多步骤、多模态和多场景的任务,为用户提供高效的智能解决方案,适合企业和个人用户提升工作效率和任务完成质量。
多模态大型语言模型,优化视觉识别和图像推理。
Llama-3.2-90B-Vision是Meta公司发布的一款多模态大型语言模型(LLM),专注于视觉识别、图像推理、图片描述和回答有关图片的一般问题。该模型在常见的行业基准测试中超越了许多现有的开源和封闭的多模态模型。
AI平台,一键生成高质量品牌视觉图像。
Krut AI是一个集成多种产品的AI平台,用户无需成为专业的提示器专家,即可生成高质量的定制品牌图像。它通过各种工具,如产品工作室、模特工作室、背景移除、图像放大器等,为电子商务市场提供AI辅助的创意解决方案。Krut AI的主要优点包括成本节约、效率提升、准确性提高和时间效率。
基于双向状态空间模型的高效视觉表示学习框架
Vision Mamba是一个高效的视觉表示学习框架,使用双向Mamba模块构建,可以克服计算和内存限制,进行高分辨率图像的Transformer风格理解。它不依赖自注意力机制,通过位置嵌入和双向状态空间模型压缩视觉表示,实现更高性能,计算和内存效率也更好。该框架在 ImageNet分类、COCO目标检测和ADE20k语义分割任务上,性能优于经典的视觉Transformers,如DeiT,但计算和内存效率提高2.8倍和86.8%。
© 2025 AIbase 备案号:闽ICP备08105208号-14