需求人群:
"该产品适用于研究人员和开发者,尤其是那些专注于计算机视觉、生成模型和空间推理领域的专业人士。它为复杂视觉任务的建模和推理提供了强大的工具,能够帮助用户在相关领域取得突破性进展。"
使用场景示例:
在MNIST数独数据集上,SRM能够通过逐步推理解决复杂的视觉数独问题。
在Even Pixels数据集上,SRM展示了其在处理复杂图像分布时的优越性能。
通过Counting Polygons FFHQ数据集,SRM证明了其在视觉推理任务中的多样性和准确性。
产品特色:
通过去噪过程迭代解决视觉任务,如视觉数独
支持自定义噪声水平,控制生成过程的顺序化程度
提供多种顺序化策略,包括基于不确定性的贪婪启发式方法
引入两阶段噪声水平采样策略,确保训练过程的全面性
提供多种基准数据集,用于评估模型的推理能力和复杂分布处理能力
使用教程:
访问项目主页,了解SRM的基本原理和框架。
下载SRM的代码和预训练模型,安装必要的依赖库。
使用提供的基准数据集训练或微调SRM模型。
通过调整噪声水平和顺序化策略,优化模型的推理性能。
在实际的视觉任务中部署SRM,利用其强大的空间推理能力解决问题。
浏览量:36
通过去噪生成模型进行空间推理,解决复杂分布下的视觉任务。
SRM是一种基于去噪生成模型的空间推理框架,用于处理连续变量集合的推理任务。它通过为每个未观测变量分配独立的噪声水平,逐步推断出这些变量的连续表示。该技术在处理复杂分布时表现出色,能够有效减少生成过程中的幻觉现象。SRM首次证明了去噪网络可以预测生成顺序,从而显著提高了特定推理任务的准确性。该模型由德国马普信息研究所开发,旨在推动空间推理和生成模型的研究。
SpatialLM 是一个用于空间理解的大语言模型。
SpatialLM 是一个专为处理 3D 点云数据设计的大型语言模型,能够生成结构化的 3D 场景理解输出,包括建筑元素和对象的语义类别。它能够从单目视频序列、RGBD 图像和 LiDAR 传感器等多种来源处理点云数据,无需专用设备。SpatialLM 在自主导航和复杂 3D 场景分析任务中具有重要应用价值,显著提升空间推理能力。
Inductive Moment Matching 是一种新型的生成模型,用于高质量图像生成。
Inductive Moment Matching (IMM) 是一种先进的生成模型技术,主要用于高质量图像生成。该技术通过创新的归纳矩匹配方法,显著提高了生成图像的质量和多样性。其主要优点包括高效性、灵活性以及对复杂数据分布的强大建模能力。IMM 由 Luma AI 和斯坦福大学的研究团队开发,旨在推动生成模型领域的发展,为图像生成、数据增强和创意设计等应用提供强大的技术支持。该项目开源了代码和预训练模型,方便研究人员和开发者快速上手和应用。
通过多实例扩散模型将单张图像生成高保真度的3D场景。
MIDI是一种创新的图像到3D场景生成技术,它利用多实例扩散模型,能够从单张图像中直接生成具有准确空间关系的多个3D实例。该技术的核心在于其多实例注意力机制,能够有效捕捉物体间的交互和空间一致性,无需复杂的多步骤处理。MIDI在图像到场景生成领域表现出色,适用于合成数据、真实场景数据以及由文本到图像扩散模型生成的风格化场景图像。其主要优点包括高效性、高保真度和强大的泛化能力。
BioEmu 是一个用于可扩展模拟蛋白质平衡系综的生成式深度学习模型。
BioEmu 是微软开发的一种深度学习模型,用于模拟蛋白质的平衡系综。该技术通过生成式深度学习方法,能够高效地生成蛋白质的结构样本,帮助研究人员更好地理解蛋白质的动态行为和结构多样性。该模型的主要优点在于其可扩展性和高效性,能够处理复杂的生物分子系统。它适用于生物化学、结构生物学和药物设计等领域的研究,为科学家提供了一种强大的工具来探索蛋白质的动态特性。
EurusPRM-Stage2是一个基于隐式过程奖励的强化学习模型,用于提升生成模型的推理能力。
EurusPRM-Stage2是一个先进的强化学习模型,通过隐式过程奖励来优化生成模型的推理过程。该模型利用因果语言模型的对数似然比来计算过程奖励,从而在不增加额外标注成本的情况下提升模型的推理能力。其主要优点在于能够在仅使用响应级标签的情况下,隐式地学习到过程奖励,从而提高生成模型的准确性和可靠性。该模型在数学问题解答等任务中表现出色,适用于需要复杂推理和决策的场景。
EurusPRM-Stage1是一个基于隐式过程奖励的强化学习模型,用于提升生成模型的推理能力。
EurusPRM-Stage1是PRIME-RL项目的一部分,旨在通过隐式过程奖励来增强生成模型的推理能力。该模型利用隐式过程奖励机制,无需额外标注过程标签,即可在推理过程中获得过程奖励。其主要优点是能够有效地提升生成模型在复杂任务中的表现,同时降低了标注成本。该模型适用于需要复杂推理和生成能力的场景,如数学问题解答、自然语言生成等。
一个用于信息检索和生成的灵活高性能框架
FlexRAG是一个用于检索增强生成(RAG)任务的灵活且高性能的框架。它支持多模态数据、无缝配置管理和开箱即用的性能,适用于研究和原型开发。该框架使用Python编写,具有轻量级和高性能的特点,能够显著提高RAG工作流的速度和减少延迟。其主要优点包括支持多种数据类型、统一的配置管理以及易于集成和扩展。
盲图像恢复技术,利用即时生成参考图像恢复破损图像
InstantIR是一种基于扩散模型的盲图像恢复方法,能够在测试时处理未知退化问题,提高模型的泛化能力。该技术通过动态调整生成条件,在推理过程中生成参考图像,从而提供稳健的生成条件。InstantIR的主要优点包括:能够恢复极端退化的图像细节,提供逼真的纹理,并且通过文本描述调节生成参考,实现创造性的图像恢复。该技术由北京大学、InstantX团队和香港中文大学的研究人员共同开发,得到了HuggingFace和fal.ai的赞助支持。
长文本问答增强型检索生成模型
LongRAG是一个基于大型语言模型(LLM)的双视角、鲁棒的检索增强型生成系统范式,旨在增强对复杂长文本知识的理解和检索能力。该模型特别适用于长文本问答(LCQA),能够处理全局信息和事实细节。产品背景信息显示,LongRAG通过结合检索和生成技术,提升了对长文本问答任务的性能,特别是在需要多跳推理的场景中。该模型是开源的,可以免费使用,主要面向研究者和开发者。
基于文本生成图像的多模态扩散变换器模型
Stable Diffusion 3.5 Medium是一个基于文本到图像的生成模型,由Stability AI开发,具有改进的图像质量、排版、复杂提示理解和资源效率。该模型使用了三个固定的预训练文本编码器,通过QK-规范化提高训练稳定性,并在前12个变换层中引入双注意力块。它在多分辨率图像生成、一致性和各种文本到图像任务的适应性方面表现出色。
连续时间一致性模型的简化、稳定与扩展
OpenAI 提出的连续时间一致性模型(sCM)是一种生成模型,它在生成高质量样本时,只需要两个采样步骤,与领先的扩散模型相比,具有显著的速度优势。sCM 通过简化理论公式,稳定并扩展了大规模数据集的训练,使得在保持样本质量的同时,大幅减少了采样时间,为实时应用提供了可能性。
高效能的文本到图像生成模型
Stable Diffusion 3.5 Large Turbo 是一个基于文本生成图像的多模态扩散变换器(MMDiT)模型,采用了对抗性扩散蒸馏(ADD)技术,提高了图像质量、排版、复杂提示理解和资源效率,特别注重减少推理步骤。该模型在生成图像方面表现出色,能够理解和生成复杂的文本提示,适用于多种图像生成场景。它在Hugging Face平台上发布,遵循Stability Community License,适合研究、非商业用途以及年收入少于100万美元的组织或个人免费使用。
使用文本生成音乐的模型
FluxMusic是一个基于PyTorch实现的文本到音乐生成模型,它通过扩散式修正流变换器探索了一种简单的文本到音乐生成方法。这个模型可以生成根据文本提示的音乐片段,具有创新性和高度的技术复杂性。它代表了音乐生成领域的前沿技术,为音乐创作提供了新的可能。
ViPer是一种个性化方法,通过要求用户对几张图片发表评论,解释他们的喜好和不喜好,提取个人偏好。这些偏好指导文本到图像模型生成符合个人口味的图像。
ViPer是一种个性化生成模型,可以根据用户的视觉偏好生成符合个人口味的图像。该模型使用了稳定扩散XL技术,可以在保持图像质量的同时实现个性化生成。ViPer的主要优点是可以为用户提供个性化的图像生成服务,满足用户的个性化需求。
视频到音频生成模型,增强同步性
MaskVAT是一种视频到音频(V2A)生成模型,它利用视频的视觉特征来生成与场景匹配的逼真声音。该模型特别强调声音的起始点与视觉动作的同步性,以避免不自然的同步问题。MaskVAT结合了全频带高质量通用音频编解码器和序列到序列的遮蔽生成模型,能够在保证高音频质量、语义匹配和时间同步性的同时,达到与非编解码器生成音频模型相媲美的竞争力。
生成多视角视频的模型
Stable Video 4D (SV4D) 是基于 Stable Video Diffusion (SVD) 和 Stable Video 3D (SV3D) 的生成模型,它接受单一视角的视频并生成该对象的多个新视角视频(4D 图像矩阵)。该模型训练生成 40 帧(5 个视频帧 x 8 个摄像机视角)在 576x576 分辨率下,给定 5 个相同大小的参考帧。通过运行 SV3D 生成轨道视频,然后使用轨道视频作为 SV4D 的参考视图,并输入视频作为参考帧,进行 4D 采样。该模型还通过使用生成的第一帧作为锚点,然后密集采样(插值)剩余帧来生成更长的新视角视频。
开源的基于流的文本到图像生成模型
AuraFlow v0.1是一个完全开源的、基于流的文本到图像生成模型,它在GenEval上达到了最先进的结果。目前模型处于beta阶段,正在不断改进中,社区反馈至关重要。感谢两位工程师@cloneofsimo和@isidentical将此项目变为现实,以及为该项目奠定基础的研究人员。
3D生成建模的高精度和结构化辐射表示
GaussianCube是一种创新的3D辐射表示方法,它通过结构化和显式的表示方式,极大地促进了三维生成建模的发展。该技术通过使用一种新颖的密度约束高斯拟合算法和最优传输方法,将高斯函数重新排列到预定义的体素网格中,从而实现了高精度的拟合。与传统的隐式特征解码器或空间无结构的辐射表示相比,GaussianCube具有更少的参数和更高的质量,使得3D生成建模变得更加容易。
实时表情生成人类模型
PROTEUS是Apparate Labs推出的一款下一代基础模型,用于实时表情生成人类。它采用先进的transformer架构的潜在扩散模型,创新的潜在空间设计实现了实时效率,并能通过进一步的架构和算法改进,达到每秒100帧以上视频流。PROTEUS旨在提供一种通过语音控制的视觉体现,为人工对话实体提供直观的接口,并且与多种大型语言模型兼容,可定制用于多种不同应用。
Cohere的生成AI平台使用指南
Cookbooks是Cohere提供的一个在线文档平台,旨在帮助开发者和用户了解如何利用Cohere的生成AI平台构建各种应用。它包含了多种使用案例的指南,如构建代理、集成开源软件、语义搜索、云服务、检索增强生成(RAG)、摘要生成等。这些指南提供了最佳实践,帮助用户最大限度地利用Cohere的模型,并且所有内容都已设置好,准备就绪,供用户开始测试。
一种新的文本条件高分辨率生成模型
Phased Consistency Model(PCM)是一种新型的生成模型,旨在解决Latent Consistency Model(LCM)在文本条件高分辨率生成中的局限性。PCM通过创新的策略在训练和推理阶段提高了生成质量,并通过广泛的实验验证了其在不同步骤(1步、2步、4步、8步、16步)下与Stable Diffusion和Stable Diffusion XL基础模型的结合效果。
Imagen 3是我们质量最高的文本到图像模型,能够生成具有更好细节、更丰富光照和更少干扰性伪影的图像。
Imagen 3是我们质量最高的文本到图像模型,能够生成具有更好细节、更丰富光照和更少干扰性伪影的图像。Imagen 3通过改进文本理解能力,可以生成多种视觉风格的图像,并捕捉长文本提示中的小细节。Imagen 3可用于生成快速草图到高分辨率图像等不同类型任务,并提供多个优化版本。
一个统一的文本到任意模态生成框架
Lumina-T2X是一个先进的文本到任意模态生成框架,它能够将文本描述转换为生动的图像、动态视频、详细的多视图3D图像和合成语音。该框架采用基于流的大型扩散变换器(Flag-DiT),支持高达7亿参数,并能扩展序列长度至128,000个标记。Lumina-T2X集成了图像、视频、3D对象的多视图和语音频谱图到一个时空潜在标记空间中,可以生成任何分辨率、宽高比和时长的输出。
提升生成模型质量和加速推理的项目
UniFL是一个项目,旨在提升生成模型质量和加速推理速度。它通过感知反馈学习、解耦反馈学习和对抗性反馈学习三个关键组件,有效解决了当前扩散模型存在的图像质量、美学吸引力和推理速度等问题。经过实验验证和用户研究,UniFL在多个扩散模型上展现出显著的性能提升和强大的泛化能力。
CosXL模型调整为使用余弦连续EDM VPred调度,可产生全色彩范围图像。
Cos Stable Diffusion XL 1.0 Base调整为使用余弦连续EDM VPred调度。最重要的特性是其产生从纯黑到纯白的全色彩范围图像,同时对图像每一步的变化率进行了更细微的改进。 Edit Stable Diffusion XL 1.0 Base调整为使用余弦连续EDM VPred调度,并升级为执行图像编辑。此模型以源图像和提示作为输入,将提示解释为如何改变图像的指令。 定价:免费使用。 定位:用于生成艺术品、设计等创意过程中,在教育或创意工具中的应用,研究生成模型,部署具有生成有害内容潜力的模型,探究理解生成模型的局限性和偏见。
Champ:一种用于生成 3D 物体形状的生成模型
Champ 是一种用于生成 3D 物体形状的生成模型,它结合了隐函数和卷积神经网络,以生成高质量、多样化和逼真的 3D 形状。它可以生成各种类别的形状,包括动物、车辆和家具。
© 2025 AIbase 备案号:闽ICP备08105208号-14