需求人群:
"LaVi-Bridge可用于文本到图像生成任务,特别是在需要集成更先进语言模型或视觉模型的场景。"
使用场景示例:
使用LaVi-Bridge将GPT-3语言模型与Stable Diffusion视觉模型集成,生成高质量图像
利用LaVi-Bridge将Llama语言模型与PixArt视觉模型连接,提高文本描述与生成图像的匹配度
通过LaVi-Bridge框架,快速评估不同语言模型和视觉模型在文本到图像生成任务上的性能
产品特色:
连接不同的语言模型和生成视觉模型
通过LoRA和适配器实现灵活性和插拔式集成
提高文本描述与生成图像的对齐度
提升图像质量
浏览量:121
最新流量情况
月访问量
230
平均访问时长
00:00:00
每次访问页数
1.01
跳出率
40.17%
流量来源
直接访问
32.55%
自然搜索
46.38%
邮件
0.33%
外链引荐
13.73%
社交媒体
4.83%
展示广告
0
截止目前所有流量趋势图
连接不同语言模型和生成视觉模型进行文本到图像生成
LaVi-Bridge是一种针对文本到图像扩散模型设计的桥接模型,能够连接各种预训练的语言模型和生成视觉模型。它通过利用LoRA和适配器,提供了一种灵活的插拔式方法,无需修改原始语言和视觉模型的权重。该模型与各种语言模型和生成视觉模型兼容,可容纳不同的结构。在这一框架内,我们证明了通过整合更高级的模块(如更先进的语言模型或生成视觉模型)可以明显提高文本对齐或图像质量等能力。该模型经过大量评估,证实了其有效性。
开源文本到图像生成模型
AuraFlow v0.3是一个完全开源的基于流的文本到图像生成模型。与之前的版本AuraFlow-v0.2相比,该模型经过了更多的计算训练,并在美学数据集上进行了微调,支持各种宽高比,宽度和高度可达1536像素。该模型在GenEval上取得了最先进的结果,目前处于beta测试阶段,正在不断改进中,社区反馈非常重要。
高效能的文本到图像生成模型
Stable Diffusion 3.5 Large Turbo 是一个基于文本生成图像的多模态扩散变换器(MMDiT)模型,采用了对抗性扩散蒸馏(ADD)技术,提高了图像质量、排版、复杂提示理解和资源效率,特别注重减少推理步骤。该模型在生成图像方面表现出色,能够理解和生成复杂的文本提示,适用于多种图像生成场景。它在Hugging Face平台上发布,遵循Stability Community License,适合研究、非商业用途以及年收入少于100万美元的组织或个人免费使用。
开源的基于流的文本到图像生成模型
AuraFlow v0.1是一个完全开源的、基于流的文本到图像生成模型,它在GenEval上达到了最先进的结果。目前模型处于beta阶段,正在不断改进中,社区反馈至关重要。感谢两位工程师@cloneofsimo和@isidentical将此项目变为现实,以及为该项目奠定基础的研究人员。
高性能的文本到图像生成模型
Stable Diffusion 3.5 Large 是一个基于文本生成图像的多模态扩散变换器(MMDiT)模型,由 Stability AI 开发。该模型在图像质量、排版、复杂提示理解和资源效率方面都有显著提升。它使用三个固定的预训练文本编码器,并通过 QK 归一化技术提高训练稳定性。此外,该模型在训练数据和策略上使用了包括合成数据和过滤后的公开可用数据。Stable Diffusion 3.5 Large 模型在遵守社区许可协议的前提下,可以免费用于研究、非商业用途,以及年收入少于100万美元的组织或个人的商业用途。
新一代文本到图像生成AI模型
Stable Diffusion 3是stability公司推出的新一代文本到图像生成AI模型,相比早期版本在多主体提示、图像质量和拼写能力等方面都有了极大提升。该模型采用了diffusion transformer架构和flow matching技术,参数量范围从800M到8B不等,提供了从个人用户到企业客户多种部署方案。主要功能包括:高质量图片生成、支持多主体、拼写错误纠正等。典型应用场景有:数字艺术创作、图片编辑、游戏和电影制作等。相比早期版本,该AI助手具有更强大的理解和创作能力,是新一代安全、开放、普惠的生成式AI典范。
视觉语言模型,结合图像和文本信息进行智能处理。
Aquila-VL-2B模型是一个基于LLava-one-vision框架训练的视觉语言模型(VLM),选用Qwen2.5-1.5B-instruct模型作为语言模型(LLM),并使用siglip-so400m-patch14-384作为视觉塔。该模型在自建的Infinity-MM数据集上进行训练,包含约4000万图像-文本对。该数据集结合了从互联网收集的开源数据和使用开源VLM模型生成的合成指令数据。Aquila-VL-2B模型的开源,旨在推动多模态性能的发展,特别是在图像和文本的结合处理方面。
Stability AI 生成模型是一个开源的生成模型库。
Stability AI 生成模型是一个开源的生成模型库,提供了各种生成模型的训练、推理和应用功能。该库支持各种生成模型的训练,包括基于 PyTorch Lightning 的训练,提供了丰富的配置选项和模块化的设计。用户可以使用该库进行生成模型的训练,并通过提供的模型进行推理和应用。该库还提供了示例训练配置和数据处理的功能,方便用户进行快速上手和定制。
文本图像到视频生成模型
Allegro-TI2V是一个文本图像到视频生成模型,它能够根据用户提供的提示和图像生成视频内容。该模型以其开源性、多样化的内容创作能力、高质量的输出、小巧高效的模型参数以及支持多种精度和GPU内存优化而受到关注。它代表了当前人工智能技术在视频生成领域的前沿进展,具有重要的技术价值和商业应用潜力。Allegro-TI2V模型在Hugging Face平台上提供,遵循Apache 2.0开源协议,用户可以免费下载和使用。
OFT可有效稳定微调文本到图像扩散模型
Controlling Text-to-Image Diffusion研究了如何有效引导或控制强大的文本到图像生成模型进行各种下游任务。提出了正交微调(OFT)方法,可以保持模型的生成能力。OFT可以保持神经元之间的超球面能量不变,防止模型坍塌。作者考虑了两种重要的微调任务:主体驱动生成和可控生成。结果表明,OFT方法在生成质量和收敛速度上优于现有方法。
视觉语言模型的最新进展
POINTS-Qwen-2-5-7B-Chat是一个集成了视觉语言模型最新进展和新技巧的模型,由微信AI的研究人员提出。它通过预训练数据集筛选、模型汤等技术,显著提升了模型性能。这个模型在多个基准测试中表现优异,是视觉语言模型领域的一个重要进步。
基于LLM的文本到图像生成系统
DiffusionGPT是一种基于大型语言模型(LLM)的文本到图像生成系统。它利用扩散模型构建了针对各种生成模型的领域特定树,从而能够无缝地适应各种类型的提示并集成领域专家模型。此外,DiffusionGPT引入了优势数据库,其中的思维树得到了人类反馈的丰富,使模型选择过程与人类偏好保持一致。通过广泛的实验和比较,我们展示了DiffusionGPT的有效性,展示了它在不同领域推动图像合成边界的潜力。
控制文本到图像生成过程
FreeControl是一个无需训练就可以实现对文本到图像生成过程的可控制的方法。它支持对多种条件、架构和检查点的同时控制。FreeControl通过结构指导实现与指导图像的结构对齐,通过外观指导实现使用相同种子的生成图像之间的外观共享。FreeControl包含分析阶段和合成阶段。在分析阶段,FreeControl查询文本到图像模型生成少量种子图像,然后从生成的图像构建线性特征子空间。在合成阶段,FreeControl在子空间中运用指导实现与指导图像的结构对齐,以及使用与不使用控制的生成图像之间的外观对齐。
自由形式文本图像合成与理解的视觉语言大模型
InternLM-XComposer2是一款领先的视觉语言模型,擅长自由形式文本图像合成与理解。该模型不仅能够理解传统的视觉语言,还能熟练地从各种输入中构建交织的文本图像内容,如轮廓、详细的文本规范和参考图像,实现高度可定制的内容创作。InternLM-XComposer2提出了一种部分LoRA(PLoRA)方法,专门将额外的LoRA参数应用于图像标记,以保留预训练语言知识的完整性,实现精确的视觉理解和具有文学才能的文本构成之间的平衡。实验结果表明,基于InternLM2-7B的InternLM-XComposer2在生成高质量长文本多模态内容方面优越,以及在各种基准测试中其出色的视觉语言理解性能,不仅明显优于现有的多模态模型,还在某些评估中与甚至超过GPT-4V和Gemini Pro。这凸显了它在多模态理解领域的卓越能力。InternLM-XComposer2系列模型具有7B参数,可在https://github.com/InternLM/InternLM-XComposer 上公开获取。
Google的尖端开放视觉语言模型
PaliGemma是Google发布的一款先进的视觉语言模型,它结合了图像编码器SigLIP和文本解码器Gemma-2B,能够理解图像和文本,并通过联合训练实现图像和文本的交互理解。该模型专为特定的下游任务设计,如图像描述、视觉问答、分割等,是研究和开发领域的重要工具。
PaLI-3 视觉语言模型:更小、更快、更强
Pali3是一种视觉语言模型,通过对图像进行编码并与查询一起传递给编码器-解码器Transformer来生成所需的答案。该模型经过多个阶段的训练,包括单模态预训练、多模态训练、分辨率增加和任务专业化。Pali3的主要功能包括图像编码、文本编码、文本生成等。该模型适用于图像分类、图像字幕、视觉问答等任务。Pali3的优势在于模型结构简单、训练效果好、速度快。该产品定价为免费开源。
基于Transformer的通用领域文本到图像生成
CogView是一个用于通用领域文本到图像生成的预训练Transformer模型。该模型包含410亿参数,能够生成高质量、多样化的图像。模型的训练思路采用抽象到具体的方式,先 pretrain 获得通用知识,然后 finetune 在特定域生成图像,能显著提升生成质量。值得一提的是,论文还提出了两种帮助大模型稳定训练的技巧:PB-relax 和 Sandwich-LN。
开源的文本到图像生成模型
OpenFLUX.1是一个基于FLUX.1-schnell模型的微调版本,移除了蒸馏过程,使其可以进行微调,并且拥有开源、宽松的许可证Apache 2.0。该模型能够生成令人惊叹的图像,并且只需1-4步即可完成。它是一个尝试去除蒸馏过程,创建一个可以微调的开源许可模型。
基于ControlNet的文本到图像生成模型
flux-controlnet-canny是由XLabs AI团队开发的基于FLUX.1-dev模型的ControlNet Canny模型,用于文本到图像的生成。该模型通过训练,能够根据文本提示生成高质量的图像,广泛应用于创意设计和视觉艺术领域。
提高文本到图像模型中空间一致性的解决方案
SPRIGHT是一个专注于空间关系的大规模视觉语言数据集和模型。它通过重新描述600万张图像构建了SPRIGHT数据集,显著增加了描述中的空间短语。该模型在444张包含大量物体的图像上进行微调训练,从而优化生成具有空间关系的图像。SPRIGHT在多个基准测试中实现了空间一致性的最新水平,同时提高了图像质量评分。
面向生成场景的可控大语言模型
孟子生成式大模型(孟子 GPT)是一个面向生成场景的可控大语言模型,能够通过多轮的方式帮助用户完成特定场景中的多种工作任务。它支持知识问答、多语言翻译、通用写作和金融场景任务等功能,具有更可控、更灵活、更个性、更专业的优势。具体定价和使用方式请咨询官方网站。
Gemini Embedding 是一种先进的文本嵌入模型,通过 Gemini API 提供强大的语言理解能力。
Gemini Embedding 是 Google 推出的一种实验性文本嵌入模型,通过 Gemini API 提供服务。该模型在多语言文本嵌入基准测试(MTEB)中表现卓越,超越了之前的顶尖模型。它能够将文本转换为高维数值向量,捕捉语义和上下文信息,广泛应用于检索、分类、相似性检测等场景。Gemini Embedding 支持超过 100 种语言,具备 8K 输入标记长度和 3K 输出维度,同时引入了嵌套表示学习(MRL)技术,可灵活调整维度以满足存储需求。该模型目前处于实验阶段,未来将推出稳定版本。
12亿参数的文本到图像生成模型
FLUX.1-dev是一个拥有12亿参数的修正流变换器,能够根据文本描述生成图像。它代表了文本到图像生成技术的最新发展,具有先进的输出质量,仅次于其专业版模型FLUX.1 [pro]。该模型通过指导蒸馏训练,提高了效率,并且开放权重以推动新的科学研究,并赋予艺术家开发创新工作流程的能力。生成的输出可以用于个人、科学和商业目的,具体如flux-1-dev-non-commercial-license所述。
文本到视频的指导生成模型
InstructVideo 是一种通过人类反馈用奖励微调来指导文本到视频的扩散模型的方法。它通过编辑的方式进行奖励微调,减少了微调成本,同时提高了微调效率。它使用已建立的图像奖励模型,通过分段稀疏采样和时间衰减奖励的方式提供奖励信号,显著提高了生成视频的视觉质量。InstructVideo 不仅能够提高生成视频的视觉质量,还能保持较强的泛化能力。欲了解更多信息,请访问官方网站。
© 2025 AIbase 备案号:闽ICP备08105208号-14