需求人群:
"SPRIGHT可应用于任何需要生成具有合理空间布局的图像的场景,如室内设计、平面布局、机器人环境模拟等。"
使用场景示例:
一间带有壁炉的客厅,沙发在壁炉的右侧,茶几在沙发前方。
一个装满水果的篮子,苹果在左侧,香蕉在右侧,桔子在中间。
一座城市的街景,高楼大厦在道路的两侧,路中间有一个喷泉。
产品特色:
大规模空间关系数据集SPRIGHT
在具有大量物体的图像上微调训练以优化空间一致性
在多个基准测试中实现了空间一致性的最新水平
提高了图像质量评分FID和CMMD
浏览量:119
最新流量情况
月访问量
171
平均访问时长
00:00:00
每次访问页数
1.01
跳出率
37.28%
流量来源
直接访问
36.11%
自然搜索
42.97%
邮件
0.13%
外链引荐
15.19%
社交媒体
4.43%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
韩国
86.09%
美国
13.91%
提高文本到图像模型中空间一致性的解决方案
SPRIGHT是一个专注于空间关系的大规模视觉语言数据集和模型。它通过重新描述600万张图像构建了SPRIGHT数据集,显著增加了描述中的空间短语。该模型在444张包含大量物体的图像上进行微调训练,从而优化生成具有空间关系的图像。SPRIGHT在多个基准测试中实现了空间一致性的最新水平,同时提高了图像质量评分。
提高文本到图像合成质量的一致性蒸馏技术
TCD是一种用于文本到图像合成的一致性蒸馏技术,它通过轨迹一致性函数(TCF)和策略性随机采样(SSS)来减少合成过程中的错误。TCD在低NFE(噪声自由能量)时显著提高图像质量,并在高NFE时保持比教师模型更详细的结果。TCD不需要额外的判别器或LPIPS监督,即可在低NFE和高NFE时均保持优越的生成质量。
训练无监督一致性文本到图像生成
ConsiStory是一个无需训练就能实现在预训练的文本到图像模型中生成一致性主体的方法。它不需要微调或个性化,因此比先前最优方法快20倍。我们通过引入以主体为驱动的共享注意力模块和基于对应关系的特征注入来增强模型,以促进图像之间的主体一致性。另外,我们开发了在保持主体一致性的同时鼓励布局多样性的策略。ConsiStory可以自然地扩展到多主体场景,甚至可以实现对常见对象的无需训练的个性化。
快速可控的图像生成与潜在一致性模型
PIXART LCM是一个文本到图像合成框架,将潜在一致性模型(LCM)和ControlNet集成到先进的PIXART-α模型中。PIXART LCM以其能够通过高效的训练过程生成1024px分辨率的高质量图像而闻名。在PIXART-δ中集成LCM显著加快了推理速度,使得仅需2-4步即可生成高质量图像。特别值得注意的是,PIXART-δ实现了在0.5秒内生成1024x1024像素图像的突破,比PIXART-α改进了7倍。此外,PIXART-δ经过精心设计,可在单日内在32GB V100GPU上进行高效训练。具有8位推理能力的PIXART-δ可以在8GB GPU内存约束下合成1024px图像,极大地增强了其可用性和可访问性。此外,引入类似于ControlNet的模块可以对文本到图像扩散模型进行精细控制。我们引入了一种新颖的ControlNet-Transformer架构,专门为Transformers量身定制,实现了显式可控性和高质量图像生成。作为一种最先进的开源图像生成模型,PIXART-δ为稳定扩散模型家族提供了一个有前途的选择,为文本到图像合成做出了重大贡献。
一致的文本到视频编辑的光流引导注意力
FLATTEN是一种用于文本到视频编辑的光流引导注意力插件。它通过在扩散模型的U-Net中引入光流来解决文本到视频编辑中的一致性问题。FLATTEN通过强制在不同帧上的相同光流路径上的补丁在注意模块中相互关注,从而提高了编辑视频的视觉一致性。此外,FLATTEN是无需训练的,可以无缝集成到任何基于扩散的文本到视频编辑方法中,并提高其视觉一致性。实验结果表明,我们提出的方法在现有的文本到视频编辑基准上取得了最新的性能。特别是,我们的方法在保持编辑视频的视觉一致性方面表现出色。
利用LLM提高T2I图像生成一致性
OPT2I是一个T2I优化框架,利用大型语言模型(LLM)提高提示-图像一致性。通过迭代生成修订后的提示,优化生成过程。能显著提高一致性得分,同时保持FID并增加生成数据与真实数据召回率。
深入研究大型语言模型的内部一致性和自我反馈
ICSFSurvey是一个关于大型语言模型内部一致性和自我反馈的调查研究。它提供了对LLMs自我评估和自我更新机制的统一视角,包括理论框架、系统分类、评估方法、未来研究方向等。
为扩散模型提供一致性分辨率适配
ResAdapter是一个为扩散模型(如Stable Diffusion)设计的分辨率适配器,它能够在保持风格域一致性的同时,生成任意分辨率和宽高比的图像。与处理静态分辨率图像的多分辨率生成方法不同,ResAdapter直接生成动态分辨率的图像,提高了推理效率并减少了额外的推理时间。
使用扩散模型实现时间一致性的人像动画
TCAN是一种基于扩散模型的新型人像动画框架,它能够保持时间一致性并很好地泛化到未见过的领域。该框架通过特有的模块,如外观-姿态自适应层(APPA层)、时间控制网络和姿态驱动的温度图,来确保生成的视频既保持源图像的外观,又遵循驱动视频的姿态,同时保持背景的一致性。
3D一致性的视频生成框架
CamCo是一个创新的图像到视频生成框架,它能够生成具有3D一致性的高质量视频。该框架通过Plücker坐标引入相机信息,并提出了一种符合几何一致性的双线约束注意力模块。此外,CamCo在通过运动结构算法估计相机姿态的真实世界视频上进行了微调,以更好地合成物体运动。
稳定扩散VAE的一致性解码器
Consistency Decoder是一种用于稳定扩散VAE的改进解码器,提供更稳定的图像生成。它具有2.49GB的模型大小,支持从原始图像进行编码和使用GAN解码以及一致性解码。该产品定位于为图像生成提供更好的解码效果。
一种无需训练的单提示文本到图像生成方法,用于一致的图像生成。
1Prompt1Story是一种创新的文本到图像生成技术,能够在无需额外训练的情况下,通过单个提示生成一致的图像序列。该技术利用语言模型的上下文一致性,通过单个提示串联所有描述,生成具有身份一致性的图像。它支持多角色生成、空间控制生成以及真实图像个性化等功能,具有广泛的应用前景。该模型主要面向需要高效、一致图像生成的创作者和开发者,可用于故事创作、动画制作等领域。
下一代 AI 模型,实现一致性和可控的媒体生成。
Runway Gen-4 是一款先进的 AI 模型,专注于媒体生成和世界一致性。它能够在多个场景中精准生成一致的角色、地点和物体,为创作者提供前所未有的创作自由,适合电影制作、广告及产品摄影等多种应用场景。该产品不需要进行细致的调优或额外训练,简化了创作流程,提升了视频制作的质量和效率。
基于预训练的文本到图像模型生成高质量、多视角一致的3D物体图像。
ViewDiff 是一种利用预训练的文本到图像模型作为先验知识,从真实世界数据中学习生成多视角一致的图像的方法。它在U-Net网络中加入了3D体积渲染和跨帧注意力层,能够在单个去噪过程中生成3D一致的图像。与现有方法相比,ViewDiff生成的结果具有更好的视觉质量和3D一致性。
生成具有身份一致性和表情丰富性的3D人头模型
ID-to-3D是一种创新的方法,它能够从一张随意拍摄的野外图片中生成具有身份和文本引导的3D人头模型,具有分离的表情。该方法基于组合性,使用特定任务的2D扩散模型作为优化的先验。通过扩展基础模型并添加轻量级的表情感知和身份感知架构,创建了2D先验,用于几何和纹理生成,并通过微调仅0.2%的可用训练参数。结合强大的面部身份嵌入和神经表示,该方法不仅能够准确重建面部特征,还能重建配饰和头发,并可提供适用于游戏和远程呈现的渲染就绪资产。
StoryDiffusion 能够通过生成一致的图像和视频来创造魔法故事。
StoryDiffusion 是一个开源的图像和视频生成模型,它通过一致自注意力机制和运动预测器,能够生成连贯的长序列图像和视频。这个模型的主要优点在于它能够生成具有角色一致性的图像,并且可以扩展到视频生成,为用户提供了一个创造长视频的新方法。该模型对AI驱动的图像和视频生成领域有积极的影响,并且鼓励用户负责任地使用该工具。
StreamingT2V: 一致、动态、可扩展的长视频文本生成
StreamingT2V 是一种先进的自回归技术,可以创建具有丰富动态运动的长视频,没有任何停滞。它确保视频中的时间一致性,与描述性文本紧密对齐,并保持高帧级图像质量。
革命性的AI模型,排名第一的人工智能分析工具。
Red Panda AI,也称为Recraft V3,是一个在人工智能分析领域排名第一的革命性AI模型。它超越了FLUX1.1、Midjourney和OpenAI等其他模型,在设计理解和视觉输出质量方面表现出色。Red Panda AI以其设计为中心的架构,提供了无与伦比的设计原则理解、视觉层次和构图能力。它能够智能地适应不同平台和用例,保持一致的品牌身份。产品的主要优点包括设计语言理解、风格一致性控制、上下文感知、专业设计质量、快速迭代和多格式掌握。
连接不同语言模型和生成视觉模型进行文本到图像生成
LaVi-Bridge是一种针对文本到图像扩散模型设计的桥接模型,能够连接各种预训练的语言模型和生成视觉模型。它通过利用LoRA和适配器,提供了一种灵活的插拔式方法,无需修改原始语言和视觉模型的权重。该模型与各种语言模型和生成视觉模型兼容,可容纳不同的结构。在这一框架内,我们证明了通过整合更高级的模块(如更先进的语言模型或生成视觉模型)可以明显提高文本对齐或图像质量等能力。该模型经过大量评估,证实了其有效性。
高效的文本到音频生成模型,具有潜在一致性。
AudioLCM是一个基于PyTorch实现的文本到音频生成模型,它通过潜在一致性模型来生成高质量且高效的音频。该模型由Huadai Liu等人开发,提供了开源的实现和预训练模型。它能够将文本描述转化为接近真实的音频,具有重要的应用价值,尤其是在语音合成、音频制作等领域。
内容一致的多场景视频生成
VideoDrafter 是一个内容一致的多场景视频生成框架。它利用大型语言模型(LLM)将输入提示转换为包含多场景脚本的综合脚本,脚本包括描述事件、前景 / 背景实体以及相机运动的提示。VideoDrafter 识别脚本中的共同实体,并要求 LLM 对每个实体进行详细描述。然后,将每个实体的描述输入到文本到图像模型中,以生成每个实体的参考图像。最后,通过考虑参考图像、事件描述和相机运动,通过扩散过程生成多场景视频,扩散模型将参考图像作为条件和对齐进行处理,以增强多场景视频的内容一致性。
多视图一致性图像生成的便捷解决方案
MV-Adapter是一种基于适配器的多视图图像生成解决方案,它能够在不改变原有网络结构或特征空间的前提下,增强预训练的文本到图像(T2I)模型及其衍生模型。通过更新更少的参数,MV-Adapter实现了高效的训练并保留了预训练模型中嵌入的先验知识,降低了过拟合风险。该技术通过创新的设计,如复制的自注意力层和并行注意力架构,使得适配器能够继承预训练模型的强大先验,以建模新的3D知识。此外,MV-Adapter还提供了统一的条件编码器,无缝整合相机参数和几何信息,支持基于文本和图像的3D生成以及纹理映射等应用。MV-Adapter在Stable Diffusion XL(SDXL)上实现了768分辨率的多视图生成,并展示了其适应性和多功能性,能够扩展到任意视图生成,开启更广泛的应用可能性。
基于文本的视频编辑技术,使用时空切片。
Slicedit是一种零样本视频编辑技术,它利用文本到图像的扩散模型,并结合时空切片来增强视频编辑中的时序一致性。该技术能够保留原始视频的结构和运动,同时符合目标文本描述。通过广泛的实验,证明了Slicedit在编辑真实世界视频方面具有明显优势。
控制文本到图像生成过程
FreeControl是一个无需训练就可以实现对文本到图像生成过程的可控制的方法。它支持对多种条件、架构和检查点的同时控制。FreeControl通过结构指导实现与指导图像的结构对齐,通过外观指导实现使用相同种子的生成图像之间的外观共享。FreeControl包含分析阶段和合成阶段。在分析阶段,FreeControl查询文本到图像模型生成少量种子图像,然后从生成的图像构建线性特征子空间。在合成阶段,FreeControl在子空间中运用指导实现与指导图像的结构对齐,以及使用与不使用控制的生成图像之间的外观对齐。
通过定制AI模型快速生成符合品牌形象的产品视觉图像,无需专业摄影或工作室。
Kive Product Shots 是一款基于定制AI技术的产品视觉生成工具。它通过AI模型快速生成高质量的产品图像,帮助企业或个人在无需专业摄影设备和工作室的情况下,快速生成符合品牌形象的视觉内容。该技术的重要性在于能够大幅提升产品视觉制作的效率,降低成本,并保持品牌一致性。其主要优点包括高效生成、无需专业技能、可扩展性强等。产品定位为创意设计领域的辅助工具,适用于需要快速生成大量产品图像的场景,价格信息需参考官网定价。
给视觉语言模型赋予空间推理能力
SpatialVLM是一个由谷歌DeepMind开发的视觉语言模型,能够对空间关系进行理解和推理。它通过大规模合成数据的训练,获得了像人类一样直观地进行定量空间推理的能力。这不仅提高了其在空间VQA任务上的表现,还为链式空间推理和机器人控制等下游任务打开了新的可能。
高度写实的文本到图像模型
Deep floyd是一个开源的文本到图像模型,具有高度的写实性和语言理解能力。它由一个冻结的文本编码器和三个级联的像素扩散模块组成:一个基础模型用于根据文本提示生成 64x64 像素的图像,以及两个超分辨率模型,分别用于生成分辨率逐渐增加的图像:256x256 像素和 1024x1024 像素。模型的所有阶段都利用基于 T5 transformer 的冻结文本编码器来提取文本嵌入,然后将其输入到一个增强了交叉注意力和注意力池化的 UNet 架构中。这个高效的模型在性能上超过了当前的最先进模型,在 COCO 数据集上实现了零样本 FID 得分为 6.66。我们的工作强调了级联扩散模型的第一阶段中更大的 UNet 架构的潜力,并展示了文本到图像合成的一个有前途的未来。
自适应扩散模型,生成多语言字体效果
FontStudio是一个创新的字体效果生成模型,它利用自适应扩散技术,能够在不规则的字体形状画布上生成连贯一致的视觉内容。这项技术突破了传统矩形画布的限制,为多语言字体设计提供了新的解决方案。FontStudio系统在用户偏好研究中显示出明显的优势,甚至在与Adobe Firefly等顶尖商业产品比较时,也获得了78%的美学胜出率。
ImagenHub:标准化条件图像生成模型的推理和评估
ImagenHub是一个一站式库,用于标准化所有条件图像生成模型的推理和评估。该项目首先定义了七个突出的任务并创建了高质量的评估数据集。其次,我们构建了一个统一的推理管道来确保公平比较。第三,我们设计了两个人工评估指标,即语义一致性和感知质量,并制定了全面的指南来评估生成的图像。我们训练专家评审员根据提出的指标来评估模型输出。该人工评估在76%的模型上实现了高的评估者间一致性。我们全面地评估了约30个模型,并观察到三个关键发现:(1)现有模型的性能普遍不令人满意,除了文本引导的图像生成和主题驱动的图像生成外,74%的模型整体得分低于0.5。(2)我们检查了已发表论文中的声明,发现83%的声明是正确的。(3)除了主题驱动的图像生成外,现有的自动评估指标都没有高于0.2的斯皮尔曼相关系数。未来,我们将继续努力评估新发布的模型,并更新排行榜以跟踪条件图像生成领域的进展。
© 2025 AIbase 备案号:闽ICP备08105208号-14