需求人群:
"AudioLCM模型主要面向音频工程师、语音合成研究者和开发者,以及对音频生成技术感兴趣的学者和爱好者。它适用于需要将文本描述自动转化为音频的应用场景,如虚拟助手、有声读物制作、语言学习工具等。"
使用场景示例:
使用AudioLCM生成特定文本的朗读音频,用于有声书或播客。
将历史人物的演讲稿转化为逼真的语音,用于教育或展览。
为视频游戏或动画角色生成定制的语音,增强角色的个性和表现力。
产品特色:
支持从文本到音频的高保真度生成。
提供了预训练模型,方便用户快速开始使用。
允许用户下载权重,以支持自定义数据集。
提供了详细的训练和推理代码,方便用户学习和二次开发。
能够处理mel频谱图的生成,为音频合成提供必要的中间表示。
支持变分自编码器和扩散模型的训练,以生成高质量的音频。
提供了评估工具,可以计算FD, FAD, IS, KL等音频质量指标。
使用教程:
克隆AudioLCM的GitHub仓库到本地机器。
根据README中的说明,准备NVIDIA GPU和CUDA cuDNN环境。
下载所需的数据集权重,并按照指导准备数据集信息。
运行mel频谱图生成脚本,为音频合成准备中间表示。
训练变分自编码器(VAE),以学习文本和音频之间的潜在映射。
使用训练好的VAE模型,训练扩散模型以生成高质量的音频。
使用评估工具对生成的音频进行质量评估,如计算FD, FAD等指标。
根据个人需求,对模型进行微调和优化,以适应特定的应用场景。
浏览量:174
最新流量情况
月访问量
4.92m
平均访问时长
00:06:33
每次访问页数
6.11
跳出率
36.20%
流量来源
直接访问
51.61%
自然搜索
33.46%
邮件
0.04%
外链引荐
12.58%
社交媒体
2.19%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
12.55%
德国
3.84%
印度
9.38%
俄罗斯
4.61%
美国
18.64%
高效的文本到音频生成模型,具有潜在一致性。
AudioLCM是一个基于PyTorch实现的文本到音频生成模型,它通过潜在一致性模型来生成高质量且高效的音频。该模型由Huadai Liu等人开发,提供了开源的实现和预训练模型。它能够将文本描述转化为接近真实的音频,具有重要的应用价值,尤其是在语音合成、音频制作等领域。
高效的文本到音频生成模型
TangoFlux是一个高效的文本到音频(TTA)生成模型,拥有515M参数,能够在单个A40 GPU上仅用3.7秒生成长达30秒的44.1kHz音频。该模型通过提出CLAP-Ranked Preference Optimization (CRPO)框架,解决了TTA模型对齐的挑战,通过迭代生成和优化偏好数据来增强TTA对齐。TangoFlux在客观和主观基准测试中均实现了最先进的性能,并且所有代码和模型均开源,以支持TTA生成的进一步研究。
视频到音频生成模型
vta-ldm是一个专注于视频到音频生成的深度学习模型,能够根据视频内容生成语义和时间上与视频输入对齐的音频内容。它代表了视频生成领域的一个新突破,特别是在文本到视频生成技术取得显著进展之后。该模型由腾讯AI实验室的Manjie Xu等人开发,具有生成与视频内容高度一致的音频的能力,对于视频制作、音频后期处理等领域具有重要的应用价值。
高度逼真的多语言文本到音频生成模型
Bark是由Suno开发的基于Transformer的文本到音频模型,能够生成逼真的多语言语音以及其他类型的音频,如音乐、背景噪声和简单音效。它还支持生成非语言交流,例如笑声、叹息和哭泣声。Bark支持研究社区,提供预训练模型检查点,适用于推理并可用于商业用途。
基于扩散模型的文本到音频生成技术
Make-An-Audio 2是一种基于扩散模型的文本到音频生成技术,由浙江大学、字节跳动和香港中文大学的研究人员共同开发。该技术通过使用预训练的大型语言模型(LLMs)解析文本,优化了语义对齐和时间一致性,提高了生成音频的质量。它还设计了基于前馈Transformer的扩散去噪器,以改善变长音频生成的性能,并增强时间信息的提取。此外,通过使用LLMs将大量音频标签数据转换为音频文本数据集,解决了时间数据稀缺的问题。
高效并行音频生成技术
SoundStorm是由Google Research开发的一种音频生成技术,它通过并行生成音频令牌来大幅减少音频合成的时间。这项技术能够生成高质量、与语音和声学条件一致性高的音频,并且可以与文本到语义模型结合,控制说话内容、说话者声音和说话轮次,实现长文本的语音合成和自然对话的生成。SoundStorm的重要性在于它解决了传统自回归音频生成模型在处理长序列时推理速度慢的问题,提高了音频生成的效率和质量。
从文本提示生成立体声音频
Stable Audio Open 是一个能够从文本提示生成长达47秒的立体声音频的技术。它包含三个主要组件:一个将波形压缩到可管理序列长度的自编码器、一个基于T5的文本嵌入用于文本条件、以及一个在自编码器的潜在空间中操作的基于变换的扩散(DiT)模型。该技术在生成音频方面表现出色,能够根据文本提示生成各种类型的音频,如打击乐、电子音乐、自然声音等。
生成高保真音乐的文本到音频模型
MusicLM是一个模型,可以根据文本描述生成高保真音乐。它可以生成24kHz的音频,音乐风格和文本描述一致,并支持根据旋律进行条件生成。通过使用MusicCaps数据集,模型在音频质量和与文本描述的一致性方面优于之前的系统。MusicLM可以应用于不同的场景,如生成音乐片段、根据画作描述生成音乐等。
视频到音频生成模型,增强同步性
MaskVAT是一种视频到音频(V2A)生成模型,它利用视频的视觉特征来生成与场景匹配的逼真声音。该模型特别强调声音的起始点与视觉动作的同步性,以避免不自然的同步问题。MaskVAT结合了全频带高质量通用音频编解码器和序列到序列的遮蔽生成模型,能够在保证高音频质量、语义匹配和时间同步性的同时,达到与非编解码器生成音频模型相媲美的竞争力。
文本和语音驱动的人体视频生成,从单张人物输入图像生成视频。
VLOGGER是一种从单张人物输入图像生成文本和音频驱动的讲话人类视频的方法,它建立在最近生成扩散模型的成功基础上。我们的方法包括1)一个随机的人类到3D运动扩散模型,以及2)一个新颖的基于扩散的架构,通过时间和空间控制增强文本到图像模型。这种方法能够生成长度可变的高质量视频,并且通过对人类面部和身体的高级表达方式轻松可控。与以前的工作不同,我们的方法不需要为每个人训练,也不依赖于人脸检测和裁剪,生成完整的图像(而不仅仅是面部或嘴唇),并考虑到正确合成交流人类所需的广泛场景(例如可见的躯干或多样性主体身份)。
一款通过纯语言模型实现的文本到语音合成模型
OuteTTS-0.1-350M是一款基于纯语言模型的文本到语音合成技术,它不需要外部适配器或复杂架构,通过精心设计的提示和音频标记实现高质量的语音合成。该模型基于LLaMa架构,使用350M参数,展示了直接使用语言模型进行语音合成的潜力。它通过三个步骤处理音频:使用WavTokenizer进行音频标记化、CTC强制对齐创建精确的单词到音频标记映射、以及遵循特定格式的结构化提示创建。OuteTTS的主要优点包括纯语言建模方法、声音克隆能力、与llama.cpp和GGUF格式的兼容性。
高质量音频生成框架
AudioLM是由Google Research开发的一个框架,用于高质量音频生成,具有长期一致性。它将输入音频映射到离散标记序列,并将音频生成视为这一表示空间中的语言建模任务。AudioLM通过在大量原始音频波形上训练,学习生成自然且连贯的音频续篇,即使在没有文本或注释的情况下,也能生成语法和语义上合理的语音续篇,同时保持说话者的身份和韵律。此外,AudioLM还能生成连贯的钢琴音乐续篇,尽管它在训练时没有使用任何音乐的符号表示。
将文本转换为逼真的语音
OpenAI TTS提供文本到语音的API,基于他们的TTS模型。它带有6种内置语音,可用于朗读博客文章、在多种语言中生成口语音频以及使用流式传输实时音频输出。用户可以通过控制模型名称、文本和语音选择来生成音频文件,并且支持多种音频输出格式。
快速、准确、免费的音频转文字服务
AIbase音频提取文字工具利用人工智能技术,通过机器学习模型快速生成高质量的音频文本描述,优化文本排版,提升可读性,同时完全免费使用,无需安装、下载或付款,为创意人员提供便捷的基础服务。
Meta旗下AI音频生成研究
Audiobox是Meta的新一代音频生成研究模型,可以利用语音输入和自然语言文本提示生成声音和音效,轻松为各种用例创建定制音频。Audiobox系列模型还包括专业模型Audiobox Speech和Audiobox Sound,所有Audiobox模型都是基于共享的自监督模型Audiobox SSL构建的。
智能视频到音频生成,简化声音设计。
Resona V2A是一款AI驱动的视频到音频生成技术产品,它能够仅通过视频数据自动生成与场景、动画或电影完美匹配的声音设计、效果、拟音和环境音。该技术通过自动化音频创作过程,节省了大约90%的时间和努力,使得音频制作更加高效和智能。Resona V2A技术正在被电影制作、动画、教育和多媒体项目等行业专家和团队测试,他们对音频生产流程的效率和卓越性有严格要求。
将PDF文件转换为音频播客、讲座、摘要等
PDF2Audio是一个利用OpenAI的GPT模型将PDF文档转换成音频内容的工具。它能够将文本生成和文本到语音转换技术结合起来,为用户提供一个可以编辑草稿、提供反馈和改进建议的平台。该技术对于提高信息获取效率、辅助学习和教育等领域具有重要意义。
音频转文本
Transcriptmate是一个在线音频转文本的服务。它可以将长达3小时的录音文件转换成文本文件,并在2小时内通过电子邮件发送给您。转换结果可以以csv、srt、txt等多种格式保存。Transcriptmate支持多种语言,无需订阅或承诺,安全支付。推荐的价格为6美元/文件。
Audiox是专业AI音频生成工具。
Audiox是一款利用AI技术生成专业音频的工具,无需音乐知识,可快速创建令人惊叹的音乐和声音效果。其主要优点包括创作便捷、音质优良、使用简单,适用于音乐制作、视频制作、声效设计等领域。
Hailuo AI Audio是一款创建逼真语音的音频合成工具。
Hailuo AI Audio利用先进的语音合成技术,将文本转换为自然流畅的语音。其主要优点是能够生成高质量、富有表现力的语音,适用于多种场景,如有声读物制作、语音播报等。该产品定位为专业级音频合成工具,目前提供限时免费体验,旨在为用户提供高效、便捷的语音生成解决方案。
音频转文本工具
Recos是一个音频转文本的网站工具。它使用OpenAI的Whisper API,提供稳定的、高效的音频转文本服务。支持多种常见音频格式,保证用户的隐私安全。用户可以使用自己的OpenAI API密钥,也可以登录使用积分。每个积分可以转换一分钟的音频。
基于文本提示生成可变长度立体声音频的AI模型。
Stable Audio Open 1.0是一个利用自编码器、基于T5的文本嵌入和基于变压器的扩散模型来生成长达47秒的立体声音频的AI模型。它通过文本提示生成音乐和音频,支持研究和实验,以探索生成性AI模型的当前能力。该模型在Freesound和Free Music Archive (FMA)的数据集上进行训练,确保了数据的多样性和版权合法性。
利用多指令视频到音频合成技术
Draw an Audio是一个创新的视频到音频合成技术,它通过多指令控制,能够根据视频内容生成高质量的同步音频。这项技术不仅提升了音频生成的可控性和灵活性,还能够在多阶段产生混合音频,展现出更广泛的实际应用潜力。
音频生成与自动字幕生成模型
GenAU是一个由Snap Research开发的音频生成模型,它通过AutoCap自动字幕生成模型和GenAu音频生成架构,显著提升了音频生成的质量。它在生成环境声音和效果方面具有挑战性,特别是在数据稀缺和字幕质量不足的情况下。GenAU模型能够生成高质量的音频,并且在音频合成领域具有很大的潜力。
高性能的文本到语音合成模型
OuteTTS-0.2-500M是基于Qwen-2.5-0.5B构建的文本到语音合成模型,它在更大的数据集上进行了训练,实现了在准确性、自然度、词汇量、声音克隆能力以及多语言支持方面的显著提升。该模型特别感谢Hugging Face提供的GPU资助,支持了模型的训练。
音乐生成模型,结合文本和音频条件进行控制。
JASCO是一个结合了符号和基于音频的条件的文本到音乐生成模型,它能够根据全局文本描述和细粒度的局部控制生成高质量的音乐样本。JASCO基于流匹配建模范式和一种新颖的条件方法,允许音乐生成同时受到局部(例如和弦)和全局(文本描述)的控制。通过信息瓶颈层和时间模糊来提取与特定控制相关的信息,允许在同一个文本到音乐模型中结合符号和基于音频的条件。
即时文本转语音,适用于需要即时音频反馈的应用
RealtimeTTS 是一个易于使用、低延迟的文本转语音库,用于实时应用。它可以将文本流转换为立即的音频输出。主要功能包括实时流式合成和播放、高级句子边界检测、模块化引擎设计等。该库支持多种文本到语音引擎,并适用于语音助手和需要即时音频反馈的应用。详细定价和定位信息请参考官方网站。
多语言可控文本到语音合成工具包
ToucanTTS是由德国斯图加特大学自然语言处理研究所开发的多语言且可控的文本到语音合成工具包。它使用纯Python和PyTorch构建,以保持简单、易于上手,同时尽可能强大。该工具包支持教学、训练和使用最前沿的语音合成模型,具有高度的灵活性和可定制性,适用于教育和研究领域。
© 2025 AIbase 备案号:闽ICP备08105208号-14