需求人群:
"目标受众为音频内容创作者、音频工程师和研究人员。TangoFlux适合他们,因为它能够快速生成高质量的音频内容,同时开源的特性使得他们可以自由地访问和修改代码,以适应特定的需求或进行进一步的研究。"
使用场景示例:
- 音频内容创作者使用TangoFlux生成背景音乐和效果音。
- 音频工程师利用TangoFlux进行音频质量的优化和提升。
- 研究人员使用TangoFlux进行音频生成模型的性能对比研究。
产品特色:
- 快速生成:能够在3秒内生成长达30秒的44.1kHz立体声音频。
- 高效参数:拥有515M参数,实现高效的音频生成。
- 优化框架:采用CLAP-Ranked Preference Optimization (CRPO)框架,提升音频对齐质量。
- 性能领先:在客观和主观基准测试中均实现最先进的性能。
- 开源代码:所有代码和模型开源,便于研究和比较。
- 支持长音频:能够处理长达30秒的音频生成任务。
- 高音质输出:相比其他模型,输出音质更高,事件更清晰。
使用教程:
1. 访问TangoFlux的GitHub页面,下载开源代码。
2. 根据文档说明,安装必要的依赖和环境。
3. 运行代码,输入文本内容以生成对应的音频。
4. 利用CRPO框架对生成的音频进行优化,以提高音频对齐质量。
5. 根据需要调整模型参数,以达到最佳的音频生成效果。
6. 参与社区讨论,与其他开发者和研究人员交流使用经验和改进建议。
浏览量:12
高效的文本到音频生成模型
TangoFlux是一个高效的文本到音频(TTA)生成模型,拥有515M参数,能够在单个A40 GPU上仅用3.7秒生成长达30秒的44.1kHz音频。该模型通过提出CLAP-Ranked Preference Optimization (CRPO)框架,解决了TTA模型对齐的挑战,通过迭代生成和优化偏好数据来增强TTA对齐。TangoFlux在客观和主观基准测试中均实现了最先进的性能,并且所有代码和模型均开源,以支持TTA生成的进一步研究。
微软开源的视频分词器家族
VidTok是微软开源的一系列先进的视频分词器,它在连续和离散分词方面表现出色。VidTok在架构效率、量化技术和训练策略上都有显著的创新,提供了高效的视频处理能力,并且在多个视频质量评估指标上超越了以往的模型。VidTok的开发旨在推动视频处理和压缩技术的发展,对于视频内容的高效传输和存储具有重要意义。
多模态大型语言模型,提升文本、图像和视频数据处理能力。
Valley是由字节跳动开发的多模态大型模型(MLLM),旨在处理涉及文本、图像和视频数据的多种任务。该模型在内部电子商务和短视频基准测试中取得了最佳结果,远超过其他开源模型,并在OpenCompass多模态模型评估排行榜上展现了出色的性能,平均得分67.40,位列已知开源MLLMs(<10B)中的前两名。
开源图像到视频生成模型
Ruyi-Mini-7B是由CreateAI团队开发的开源图像到视频生成模型,具有约71亿参数,能够从输入图像生成360p到720p分辨率的视频帧,最长5秒。模型支持不同宽高比,并增强了运动和相机控制功能,提供更大的灵活性和创造力。该模型在Apache 2.0许可下发布,意味着用户可以自由使用和修改。
通过时间变化信号和声音模仿生成可控音频的模型
Sketch2Sound是一个生成音频的模型,能够从一组可解释的时间变化控制信号(响度、亮度、音高)以及文本提示中创建高质量的声音。该模型能够在任何文本到音频的潜在扩散变换器(DiT)上实现,并且只需要40k步的微调和每个控制一个单独的线性层,使其比现有的方法如ControlNet更加轻量级。Sketch2Sound的主要优点包括从声音模仿中合成任意声音的能力,以及在保持输入文本提示和音频质量的同时,遵循输入控制的大致意图。这使得声音艺术家能够结合文本提示的语义灵活性和声音手势或声音模仿的表现力和精确度来创造声音。
最强大的RWKV模型变体,打破多项英语基准测试。
Q-RWKV-6 32B Instruct Preview是由Recursal AI开发的最新RWKV模型变体,它在多项英语基准测试中超越了之前所有的RWKV、State Space和Liquid AI模型。这个模型通过将Qwen 32B Instruct模型的权重转换到定制的QRWKV6架构中,成功地用RWKV-V6注意力头替换了现有的Transformer注意力头,这一过程是由Recursal AI团队与RWKV和EleutherAI开源社区联合开发的。该模型的主要优点包括在大规模计算成本上的显著降低,以及对环境友好的开源AI技术。
开源多模态大型语言模型系列
InternVL 2.5是基于InternVL 2.0的高级多模态大型语言模型系列,它在保持核心模型架构的同时,在训练和测试策略以及数据质量方面引入了显著的增强。该模型深入探讨了模型扩展与性能之间的关系,系统地探索了视觉编码器、语言模型、数据集大小和测试时配置的性能趋势。通过在包括多学科推理、文档理解、多图像/视频理解、现实世界理解、多模态幻觉检测、视觉定位、多语言能力和纯语言处理在内的广泛基准测试中进行的广泛评估,InternVL 2.5展现出了与GPT-4o和Claude-3.5-Sonnet等领先商业模型相媲美的竞争力。特别是,该模型是第一个在MMMU基准测试中超过70%的开源MLLM,通过链式思考(CoT)推理实现了3.7个百分点的提升,并展示了测试时扩展的强大潜力。
自动解决软件开发问题的无代理方法
Agentless是一种无需代理的自动解决软件开发问题的方法。它通过定位、修复和补丁验证三个阶段来解决每个问题。Agentless利用分层过程定位故障到特定文件、相关类或函数,以及细粒度的编辑位置。然后,Agentless根据编辑位置采样多个候选补丁,并选择回归测试来运行,生成额外的复现测试以复现原始错误,并使用测试结果重新排名所有剩余补丁,以选择一个提交。Agentless是目前在SWE-bench lite上表现最佳的开源方法,具有82个修复(27.3%的解决率),平均每问题成本0.34美元。
高性能英文文本生成模型
OLMo-2-1124-7B-SFT是由艾伦人工智能研究所(AI2)发布的一个英文文本生成模型,它是OLMo 2 7B模型的监督微调版本,专门针对Tülu 3数据集进行了优化。Tülu 3数据集旨在提供多样化任务的顶尖性能,包括聊天、数学问题解答、GSM8K、IFEval等。该模型的主要优点包括强大的文本生成能力、多样性任务处理能力以及开源的代码和训练细节,使其成为研究和教育领域的有力工具。
腾讯开源的大型视频生成模型训练框架
HunyuanVideo是腾讯开源的一个系统性框架,用于训练大型视频生成模型。该框架通过采用数据策划、图像-视频联合模型训练和高效的基础设施等关键技术,成功训练了一个超过130亿参数的视频生成模型,是所有开源模型中最大的。HunyuanVideo在视觉质量、运动多样性、文本-视频对齐和生成稳定性方面表现出色,超越了包括Runway Gen-3、Luma 1.6在内的多个行业领先模型。通过开源代码和模型权重,HunyuanVideo旨在缩小闭源和开源视频生成模型之间的差距,推动视频生成生态系统的活跃发展。
先进的文本生成模型,支持多样化任务
Llama-3.1-Tulu-3-8B-DPO是Tülu3模型家族中的一员,专注于指令遵循,提供完全开源的数据、代码和配方,旨在作为现代后训练技术的全面指南。该模型专为聊天以外的多样化任务设计,如MATH、GSM8K和IFEval,以达到最先进的性能。模型主要优点包括开源数据和代码、支持多种任务、以及优秀的性能。产品背景信息显示,该模型由Allen AI研究所开发,遵循Llama 3.1社区许可协议,适用于研究和教育用途。
AI模型部署和推理优化的专家
Neural Magic是一家专注于AI模型优化和部署的公司,提供领先的企业级推理解决方案,以最大化性能和提高硬件效率。公司的产品支持在GPU和CPU基础设施上运行领先的开源大型语言模型(LLMs),帮助企业在云、私有数据中心或边缘环境中安全、高效地部署AI模型。Neural Magic的产品背景信息强调了其在机器学习模型优化方面的专业知识,以及与科研机构合作开发的创新LLM压缩技术,如GPTQ和SparseGPT。产品价格和定位方面,Neural Magic提供了免费试用和付费服务,旨在帮助企业降低成本、提高效率,并保持数据隐私和安全。
开源的PDF到Podcast工作流构建工具
NotebookLlama是一个开源项目,旨在通过一系列教程和笔记本指导用户构建从PDF到Podcast的工作流。该项目涵盖了从文本预处理到使用文本到语音模型的整个流程,适合对大型语言模型(LLMs)、提示和音频模型零知识的用户。NotebookLlama的主要优点包括易用性、教育性和实验性,它不仅提供了一个参考实现,还鼓励用户通过实验不同的模型和提示来优化结果。
开源视频生成模型
genmoai/models 是一个开源的视频生成模型,代表了视频生成技术的最新进展。该模型名为 Mochi 1,是一个基于 Asymmetric Diffusion Transformer (AsymmDiT) 架构的10亿参数扩散模型,从零开始训练,是迄今为止公开发布的最大的视频生成模型。它具有高保真运动和强提示遵循性,显著缩小了封闭和开放视频生成系统之间的差距。该模型在 Apache 2.0 许可下发布,用户可以在 Genmo 的 playground 上免费试用此模型。
轻量级推理模型,用于生成高质量图像
Stable Diffusion 3.5是一个用于简单推理的轻量级模型,它包含了文本编码器、VAE解码器和核心MM-DiT技术。该模型旨在帮助合作伙伴组织实现SD3.5,并且可以用于生成高质量的图像。它的重要性在于其高效的推理能力和对资源的低要求,使得广泛的用户群体能够使用和享受生成图像的乐趣。该模型遵循Stability AI Community License Agreement,并且可以免费使用。
开源的去蒸馏FLUX模型
LibreFLUX是一个基于Apache 2.0许可的开源版本,提供了完整的T5上下文长度,使用注意力掩码,恢复了分类器自由引导,并去除了大部分FLUX美学微调/DPO。这意味着它比基础FLUX更不美观,但有潜力更容易地微调到任何新的分布。LibreFLUX的开发秉承开源软件的核心原则,即使用困难,比专有解决方案更慢、更笨拙,并且审美停留在21世纪初。
高效能小型语言模型
Zamba2-7B是由Zyphra团队开发的一款小型语言模型,它在7B规模上超越了当前领先的模型,如Mistral、Google的Gemma和Meta的Llama3系列,无论是在质量还是性能上。该模型专为在设备上和消费级GPU上运行以及需要强大但紧凑高效模型的众多企业应用而设计。Zamba2-7B的发布,展示了即使在7B规模上,前沿技术仍然可以被小团队和适度预算所触及和超越。
小型语言模型调研、测量与洞察
SLM_Survey是一个专注于小型语言模型(SLMs)的研究项目,旨在通过调研和测量,提供对这些模型的深入了解和技术评估。该项目涵盖了基于Transformer的、仅解码器的语言模型,参数范围在100M至5B之间。通过对59个最先进的开源SLMs进行调研,分析了它们的技术创新,并在多个领域评估了它们的能力,包括常识推理、上下文学习、数学和编程。此外,还对它们的运行时成本进行了基准测试,包括推理延迟和内存占用。这些研究对于推动SLMs领域的研究具有重要价值。
机器学习工程能力的AI代理评估基准
MLE-bench是由OpenAI推出的一个基准测试,旨在衡量AI代理在机器学习工程方面的表现。该基准测试汇集了75个来自Kaggle的机器学习工程相关竞赛,形成了一套多样化的挑战性任务,测试了训练模型、准备数据集和运行实验等现实世界中的机器学习工程技能。通过Kaggle公开的排行榜数据,为每项竞赛建立了人类基准。使用开源代理框架评估了多个前沿语言模型在该基准上的表现,发现表现最佳的设置——OpenAI的o1-preview配合AIDE框架——在16.9%的竞赛中至少达到了Kaggle铜牌的水平。此外,还研究了AI代理的各种资源扩展形式以及预训练污染的影响。MLE-bench的基准代码已经开源,以促进未来对AI代理机器学习工程能力的理解。
开源AI模型,可微调、蒸馏、部署。
Llama 3.2是一系列大型语言模型(LLMs),预训练和微调在1B和3B大小的多语言文本模型,以及11B和90B大小的文本和图像输入输出文本的模型。这些模型可以用于开发高性能和高效率的应用。Llama 3.2的模型可以在移动设备和边缘设备上运行,支持多种编程语言,并且可以通过Llama Stack构建代理应用程序。
世界顶尖的开源大型语言模型
Reflection Llama-3.1 70B 是目前世界上顶尖的开源大型语言模型(LLM),采用名为 Reflection-Tuning 的新技术进行训练,使模型能够检测其推理中的错误并进行修正。该模型在合成数据上进行了训练,这些数据由 Glaive 生成。对于正在训练模型的用户来说,Glaive 是一个非常出色的工具。该模型使用标准的 Llama 3.1 聊天格式,通过特殊的标签来区分模型的内部思考和最终答案,从而提升用户体验。
高效开源的大型语言模型
OLMoE-1B-7B 是一个具有1亿活跃参数和7亿总参数的专家混合型大型语言模型(LLM),于2024年9月发布。该模型在成本相似的模型中表现卓越,与更大的模型如Llama2-13B竞争。OLMoE完全开源,支持多种功能,包括文本生成、模型训练和部署等。
RWKV v6 Finch 14B,开源大模型,高效处理长文本。
RWKV v6 Finch 14B是RWKV架构的第六个版本,也是该系列中最大的模型。它通过引入数据依赖性到token shift和time-mixing中,提高了处理长文本时的效率。Finch 14B模型在处理提示时,能够更好地管理其长期记忆,从而提供更广泛的应用范围。该模型是开源的,由Linux Foundation认可,并且接受社区的GPU集群时间捐赠以支持训练。
AI即时推理解决方案,速度领先世界。
Cerebras Inference是Cerebras公司推出的AI推理平台,提供20倍于GPU的速度和1/5的成本。它利用Cerebras的高性能计算技术,为大规模语言模型、高性能计算等提供快速、高效的推理服务。该平台支持多种AI模型,包括医疗、能源、政府和金融服务等行业应用,具有开放源代码的特性,允许用户训练自己的基础模型或微调开源模型。
2D游戏动画生成模型
godmodeanimation是一个开源的2D游戏动画生成模型,它通过训练文本到视频和图像到视频的模型来生成2D游戏动画。开发者使用了公共游戏动画数据和3D mixamo模型渲染动画来训练动画生成模型,并开源了模型、训练数据、训练代码和数据生成代码。
AI可观测性和机器学习监控平台
Evidently AI是一个开源的Python库,用于监控机器学习模型,支持从RAGs到AI助手的LLM驱动产品的评估。它提供了数据漂移、数据质量和生产ML模型性能的监控,拥有超过2000万的下载量和5000+的GitHub星标,是机器学习领域中一个值得信赖的监控工具。
9天内预训练的紧凑型大型语言模型
1.5-Pints是一个开源的紧凑型大型语言模型(LLM),它在9天内使用高质量数据进行预训练,旨在成为与Apple OpenELM和Microsoft Phi相当的AI助手。该模型的代码库和架构公开,以促进模型的复制、实验和进一步的开源开发。
高度逼真的多语言文本到音频生成模型
Bark是由Suno开发的基于Transformer的文本到音频模型,能够生成逼真的多语言语音以及其他类型的音频,如音乐、背景噪声和简单音效。它还支持生成非语言交流,例如笑声、叹息和哭泣声。Bark支持研究社区,提供预训练模型检查点,适用于推理并可用于商业用途。
© 2024 AIbase 备案号:闽ICP备08105208号-14