浏览量:117
最新流量情况
月访问量
38.90k
平均访问时长
00:00:15
每次访问页数
1.41
跳出率
48.00%
流量来源
直接访问
35.43%
自然搜索
44.25%
邮件
0.09%
外链引荐
12.75%
社交媒体
6.83%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
巴西
5.56%
德国
8.54%
印度
11.54%
俄罗斯
5.87%
美国
23.77%
音乐生成模型,结合文本和音频条件进行控制。
JASCO是一个结合了符号和基于音频的条件的文本到音乐生成模型,它能够根据全局文本描述和细粒度的局部控制生成高质量的音乐样本。JASCO基于流匹配建模范式和一种新颖的条件方法,允许音乐生成同时受到局部(例如和弦)和全局(文本描述)的控制。通过信息瓶颈层和时间模糊来提取与特定控制相关的信息,允许在同一个文本到音乐模型中结合符号和基于音频的条件。
生成高保真音乐的文本到音频模型
MusicLM是一个模型,可以根据文本描述生成高保真音乐。它可以生成24kHz的音频,音乐风格和文本描述一致,并支持根据旋律进行条件生成。通过使用MusicCaps数据集,模型在音频质量和与文本描述的一致性方面优于之前的系统。MusicLM可以应用于不同的场景,如生成音乐片段、根据画作描述生成音乐等。
高效的文本到音频生成模型
TangoFlux是一个高效的文本到音频(TTA)生成模型,拥有515M参数,能够在单个A40 GPU上仅用3.7秒生成长达30秒的44.1kHz音频。该模型通过提出CLAP-Ranked Preference Optimization (CRPO)框架,解决了TTA模型对齐的挑战,通过迭代生成和优化偏好数据来增强TTA对齐。TangoFlux在客观和主观基准测试中均实现了最先进的性能,并且所有代码和模型均开源,以支持TTA生成的进一步研究。
利用尖端AI技术,快速生成任何流派的原创音乐。
AI音乐生成器是一个基于人工智能的在线平台,能够快速生成原创音乐。它利用复杂的机器学习模型和神经网络技术,分析数百万首歌曲的模式和结构,生成高质量的旋律、和声和人声。该产品的主要优点是能够快速实现音乐创作,支持多种流派和风格的定制,并提供灵活的生成选项。它适合音乐创作者、内容制作者和企业用户,能够帮助他们节省创作时间,激发灵感,并生成符合特定需求的音乐。产品提供免费试用和多种付费计划,满足不同用户的需求。
音乐生成模型,实现文本转音频
MusicGen Stereo是一系列用于生成立体声音乐的模型,包括小型、中型、大型和旋律大型模型。这些模型可以将文本转换为高质量的音频,适用于各种音乐生成场景。定价根据模型规模和使用情况而定,定位于为用户提供高质量的音乐生成解决方案。
从文本提示生成立体声音频
Stable Audio Open 是一个能够从文本提示生成长达47秒的立体声音频的技术。它包含三个主要组件:一个将波形压缩到可管理序列长度的自编码器、一个基于T5的文本嵌入用于文本条件、以及一个在自编码器的潜在空间中操作的基于变换的扩散(DiT)模型。该技术在生成音频方面表现出色,能够根据文本提示生成各种类型的音频,如打击乐、电子音乐、自然声音等。
基于Transformer的文本到音乐生成模型
MusiConGen是一个基于Transformer的文本到音乐生成模型,它通过时间条件增强对节奏和和弦的控制。该模型从预训练的MusicGen-melody框架中微调而来。它使用符号表示的和弦和节奏控制,并结合五种不同风格的文本描述来生成样本。生成样本的和弦通过BTC和弦识别模型进行估计,如论文中所述。
高度逼真的多语言文本到音频生成模型
Bark是由Suno开发的基于Transformer的文本到音频模型,能够生成逼真的多语言语音以及其他类型的音频,如音乐、背景噪声和简单音效。它还支持生成非语言交流,例如笑声、叹息和哭泣声。Bark支持研究社区,提供预训练模型检查点,适用于推理并可用于商业用途。
自适应条件选择,提升文本到图像生成控制力
DynamicControl是一个用于提升文本到图像扩散模型控制力的框架。它通过动态组合多样的控制信号,支持自适应选择不同数量和类型的条件,以更可靠和详细地合成图像。该框架首先使用双循环控制器,利用预训练的条件生成模型和判别模型,为所有输入条件生成初始真实分数排序。然后,通过多模态大型语言模型(MLLM)构建高效条件评估器,优化条件排序。DynamicControl联合优化MLLM和扩散模型,利用MLLM的推理能力促进多条件文本到图像任务,最终排序的条件输入到并行多控制适配器,学习动态视觉条件的特征图并整合它们以调节ControlNet,增强对生成图像的控制。
使用文本生成音乐的模型
FluxMusic是一个基于PyTorch实现的文本到音乐生成模型,它通过扩散式修正流变换器探索了一种简单的文本到音乐生成方法。这个模型可以生成根据文本提示的音乐片段,具有创新性和高度的技术复杂性。它代表了音乐生成领域的前沿技术,为音乐创作提供了新的可能。
高效的文本到音频生成模型,具有潜在一致性。
AudioLCM是一个基于PyTorch实现的文本到音频生成模型,它通过潜在一致性模型来生成高质量且高效的音频。该模型由Huadai Liu等人开发,提供了开源的实现和预训练模型。它能够将文本描述转化为接近真实的音频,具有重要的应用价值,尤其是在语音合成、音频制作等领域。
基于文本提示生成可变长度立体声音频的AI模型。
Stable Audio Open 1.0是一个利用自编码器、基于T5的文本嵌入和基于变压器的扩散模型来生成长达47秒的立体声音频的AI模型。它通过文本提示生成音乐和音频,支持研究和实验,以探索生成性AI模型的当前能力。该模型在Freesound和Free Music Archive (FMA)的数据集上进行训练,确保了数据的多样性和版权合法性。
基于扩散模型的文本到音频生成技术
Make-An-Audio 2是一种基于扩散模型的文本到音频生成技术,由浙江大学、字节跳动和香港中文大学的研究人员共同开发。该技术通过使用预训练的大型语言模型(LLMs)解析文本,优化了语义对齐和时间一致性,提高了生成音频的质量。它还设计了基于前馈Transformer的扩散去噪器,以改善变长音频生成的性能,并增强时间信息的提取。此外,通过使用LLMs将大量音频标签数据转换为音频文本数据集,解决了时间数据稀缺的问题。
视频到音频生成模型
vta-ldm是一个专注于视频到音频生成的深度学习模型,能够根据视频内容生成语义和时间上与视频输入对齐的音频内容。它代表了视频生成领域的一个新突破,特别是在文本到视频生成技术取得显著进展之后。该模型由腾讯AI实验室的Manjie Xu等人开发,具有生成与视频内容高度一致的音频的能力,对于视频制作、音频后期处理等领域具有重要的应用价值。
一种新的文本条件高分辨率生成模型
Phased Consistency Model(PCM)是一种新型的生成模型,旨在解决Latent Consistency Model(LCM)在文本条件高分辨率生成中的局限性。PCM通过创新的策略在训练和推理阶段提高了生成质量,并通过广泛的实验验证了其在不同步骤(1步、2步、4步、8步、16步)下与Stable Diffusion和Stable Diffusion XL基础模型的结合效果。
视频到音频生成模型,增强同步性
MaskVAT是一种视频到音频(V2A)生成模型,它利用视频的视觉特征来生成与场景匹配的逼真声音。该模型特别强调声音的起始点与视觉动作的同步性,以避免不自然的同步问题。MaskVAT结合了全频带高质量通用音频编解码器和序列到序列的遮蔽生成模型,能够在保证高音频质量、语义匹配和时间同步性的同时,达到与非编解码器生成音频模型相媲美的竞争力。
音乐文本生成
Mustango 是一款基于文本生成音乐的模型,可以根据用户输入的文本提示生成相应的音乐。该模型通过音乐领域的知识进行训练,可以生成高质量且可控的音乐作品。Mustango 支持从简单文本描述到具体音乐要素(如和弦、节拍、速度、调式)的控制,适用于多种场景和应用。
Show-1 将像素和潜在扩散模型结合起来,以实现高效的高质量文本到视频的生成
Show-1是一种高效的文本到视频生成模型,它结合了像素级和潜变量级的扩散模型,既能生成与文本高度相关的视频,也能以较低的计算资源要求生成高质量的视频。它首先用像素级模型生成低分辨率的初步视频,然后使用潜变量模型将其上采样到高分辨率,从而结合两种模型的优势。相比纯潜变量模型,Show-1生成的视频文本关联更准确;相比纯像素模型,它的运算成本也更低。
从文本描述生成高质量音效
ElevenLabs的文本转音效API允许用户根据简短的文本描述生成高质量的音效,这些音效可以应用于游戏开发、音乐制作应用等多种场景。该API利用先进的音频合成技术,能够根据文本提示动态生成音效,为用户提供了一种创新的声音设计工具。
先进的文本到图像生成系统
Stable Diffusion 3是一款先进的文本到图像生成系统,它在排版和提示遵循方面与DALL-E 3和Midjourney v6等顶尖系统相匹敌或更优。该系统采用新的多模态扩散变换器(MMDiT)架构,使用不同的权重集来改善图像和语言的表示,从而提高文本理解和拼写能力。Stable Diffusion 3 API现已在Stability AI开发者平台上线,与Fireworks AI合作提供快速可靠的API服务,并承诺在不久的将来通过Stability AI会员资格开放模型权重以供自托管。
通过时间变化信号和声音模仿生成可控音频的模型
Sketch2Sound是一个生成音频的模型,能够从一组可解释的时间变化控制信号(响度、亮度、音高)以及文本提示中创建高质量的声音。该模型能够在任何文本到音频的潜在扩散变换器(DiT)上实现,并且只需要40k步的微调和每个控制一个单独的线性层,使其比现有的方法如ControlNet更加轻量级。Sketch2Sound的主要优点包括从声音模仿中合成任意声音的能力,以及在保持输入文本提示和音频质量的同时,遵循输入控制的大致意图。这使得声音艺术家能够结合文本提示的语义灵活性和声音手势或声音模仿的表现力和精确度来创造声音。
控制文本到图像生成过程
FreeControl是一个无需训练就可以实现对文本到图像生成过程的可控制的方法。它支持对多种条件、架构和检查点的同时控制。FreeControl通过结构指导实现与指导图像的结构对齐,通过外观指导实现使用相同种子的生成图像之间的外观共享。FreeControl包含分析阶段和合成阶段。在分析阶段,FreeControl查询文本到图像模型生成少量种子图像,然后从生成的图像构建线性特征子空间。在合成阶段,FreeControl在子空间中运用指导实现与指导图像的结构对齐,以及使用与不使用控制的生成图像之间的外观对齐。
音乐生成工具,助力音乐制作人
musicgen-songstarter-v0.2是一个针对音乐制作人设计的音频生成模型,专门用于生成有用的旋律循环。该模型在Splice样本库中的旋律循环数据集上进行了微调,能够生成立体声音频,音频频率为32kHz。与v0.1版本相比,v0.2版本使用了三倍的独特样本,并且模型大小从中等提升到了大型。
基于 PyTorch 的音乐、歌曲和音频生成工具包,支持高质量音频生成
InspireMusic 是一个专注于音乐、歌曲和音频生成的 AIGC 工具包和模型框架,采用 PyTorch 开发。它通过音频标记化和解码过程,结合自回归 Transformer 和条件流匹配模型,实现高质量音乐生成。该工具包支持文本提示、音乐风格、结构等多种条件控制,能够生成 24kHz 和 48kHz 的高质量音频,并支持长音频生成。此外,它还提供了方便的微调和推理脚本,方便用户根据需求调整模型。InspireMusic 的开源旨在赋能普通用户通过音乐创作提升研究中的音效表现。
在线AI音乐生成器,将文本转化为音乐。
AI Music Generator Free Online是一个创新的音乐生成平台,利用先进的深度学习技术,将用户输入的文本转化为充满情感和高质量的音乐作品。该平台能够覆盖广泛的音乐风格,从古典音乐的复杂和声到现代电子音乐的动态节奏,都能轻松创作。它不仅能够生成完整的歌曲,而且在音质上能够与专业录音室制作相媲美。AI Music Generator的核心优势在于其出色的适应性和广泛的音乐范围,使其成为生成无与伦比音质的强大工具。它的庞大音乐库包含了多种风格,确保每首音乐作品不仅质量上乘,而且能够独特地符合用户的创意愿景。这种个性化的音乐生成方法保证了每首作品都是独特的艺术品,反映了创作者的特定意图和艺术感觉。
基于Transformer的通用领域文本到图像生成
CogView是一个用于通用领域文本到图像生成的预训练Transformer模型。该模型包含410亿参数,能够生成高质量、多样化的图像。模型的训练思路采用抽象到具体的方式,先 pretrain 获得通用知识,然后 finetune 在特定域生成图像,能显著提升生成质量。值得一提的是,论文还提出了两种帮助大模型稳定训练的技巧:PB-relax 和 Sandwich-LN。
© 2025 AIbase 备案号:闽ICP备08105208号-14