需求人群:
"该产品适合音乐创作者、音频工程师、研究人员以及任何需要通过文字生成音乐或对音乐生成模型进行研究和开发的人群。创作者可以利用其文本到音乐的功能快速生成灵感音频,研究人员可以基于其开源代码和模型进行进一步的算法优化和功能拓展。"
使用场景示例:
使用文本提示生成舒缓的爵士乐,适用于餐厅或水疗中心背景音乐
基于一段爵士乐音频片段,继续生成后续音乐内容
通过模型生成 48kHz 高采样率的高质量古典音乐
产品特色:
支持文本到音乐生成,可根据文本描述生成对应风格的音乐
支持音乐续写任务,可基于已有音频片段继续生成音乐
支持多种音频采样率(24kHz 和 48kHz),满足不同质量需求
提供长音频生成能力,可生成超过 5 分钟的音乐
支持混合精度训练(FP16、BF16、FP32),提高训练效率
提供方便的微调和推理脚本,简化模型调整和部署流程
使用教程:
1. 克隆仓库:`git clone --recursive https://github.com/FunAudioLLM/InspireMusic.git`
2. 安装依赖:创建 Conda 环境并安装 Python 3.8 和 PyTorch 2.0.1,运行 `pip install -r requirements.txt`
3. 下载预训练模型:从 ModelScope 或 HuggingFace 下载 InspireMusic 模型
4. 运行推理脚本:使用 `python -m inspiremusic.cli.inference` 命令进行文本到音乐的生成
5. 自定义生成参数:通过命令行参数调整生成任务、模型、文本提示、音频时长等
浏览量:257
最新流量情况
月访问量
4.92m
平均访问时长
00:06:33
每次访问页数
6.11
跳出率
36.20%
流量来源
直接访问
51.61%
自然搜索
33.46%
邮件
0.04%
外链引荐
12.58%
社交媒体
2.19%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
12.55%
德国
3.84%
印度
9.38%
俄罗斯
4.61%
美国
18.64%
音频处理和生成的深度学习库
AudioCraft 是一个用于音频处理和生成的 PyTorch 库。它包含了两个最先进的人工智能生成模型:AudioGen 和 MusicGen,可以生成高质量的音频。AudioCraft 还提供了 EnCodec 音频压缩 / 分词器和 Multi Band Diffusion 解码器等功能。该库适用于音频生成的深度学习研究。
基于 PyTorch 的音乐、歌曲和音频生成工具包,支持高质量音频生成
InspireMusic 是一个专注于音乐、歌曲和音频生成的 AIGC 工具包和模型框架,采用 PyTorch 开发。它通过音频标记化和解码过程,结合自回归 Transformer 和条件流匹配模型,实现高质量音乐生成。该工具包支持文本提示、音乐风格、结构等多种条件控制,能够生成 24kHz 和 48kHz 的高质量音频,并支持长音频生成。此外,它还提供了方便的微调和推理脚本,方便用户根据需求调整模型。InspireMusic 的开源旨在赋能普通用户通过音乐创作提升研究中的音效表现。
利用尖端AI技术,快速生成任何流派的原创音乐。
AI音乐生成器是一个基于人工智能的在线平台,能够快速生成原创音乐。它利用复杂的机器学习模型和神经网络技术,分析数百万首歌曲的模式和结构,生成高质量的旋律、和声和人声。该产品的主要优点是能够快速实现音乐创作,支持多种流派和风格的定制,并提供灵活的生成选项。它适合音乐创作者、内容制作者和企业用户,能够帮助他们节省创作时间,激发灵感,并生成符合特定需求的音乐。产品提供免费试用和多种付费计划,满足不同用户的需求。
使用机器学习将任何音乐库转换为音乐制作样本库。
Polymath利用机器学习将任何音乐库(例如来自硬盘或YouTube)转换为音乐制作样本库。该工具能自动将歌曲分割成节拍、贝斯等音轨部分,将它们量化到相同的速度和节拍格(例如120bpm),分析音乐结构(例如副歌、合唱等),关键(例如C4、E3等)和其他信息(音色、响度等),并将音频转换为MIDI。结果是一个可搜索的样本库,能简化音乐制作人、DJ和ML音频开发者的工作流程。
AI音频母带处理
Mastermallow AI Audio Mastering是一个智能音频母带处理服务,旨在为内容创作者、音乐家和播客人士提供专业的音频处理。通过AI技术,将您的歌曲、播客等转化为行业级音频轨道。无需预约,快速完成。相较于传统的专业音频工程师,成本降低了20倍,速度提高了100倍。不满意不付款。
在线AI音乐生成器,将文本转化为音乐。
AI Music Generator Free Online是一个创新的音乐生成平台,利用先进的深度学习技术,将用户输入的文本转化为充满情感和高质量的音乐作品。该平台能够覆盖广泛的音乐风格,从古典音乐的复杂和声到现代电子音乐的动态节奏,都能轻松创作。它不仅能够生成完整的歌曲,而且在音质上能够与专业录音室制作相媲美。AI Music Generator的核心优势在于其出色的适应性和广泛的音乐范围,使其成为生成无与伦比音质的强大工具。它的庞大音乐库包含了多种风格,确保每首音乐作品不仅质量上乘,而且能够独特地符合用户的创意愿景。这种个性化的音乐生成方法保证了每首作品都是独特的艺术品,反映了创作者的特定意图和艺术感觉。
保护隐私的音频深度检测
SafeEar是一个创新的音频深度检测框架,它能够在不依赖于语音内容的情况下检测深度音频。这个框架通过设计一个神经音频编解码器,将语义和声学信息从音频样本中分离出来,仅使用声学信息(如韵律和音色)进行深度检测,从而保护了语音内容的隐私。SafeEar通过在真实世界中增强编解码器来提高检测器的能力,使其能够识别各种深度音频。该框架在四个基准数据集上的广泛实验表明,SafeEar在检测各种深度技术方面非常有效,其等错误率(EER)低至2.02%。同时,它还能保护五种语言的语音内容不被机器和人类听觉分析破译,通过我们的用户研究和单词错误率(WER)均高于93.93%来证明。此外,SafeEar还构建了一个用于反深度和反内容恢复评估的基准,为未来在音频隐私保护和深度检测领域的研究提供了基础。
生成高保真音乐的文本到音频模型
MusicLM是一个模型,可以根据文本描述生成高保真音乐。它可以生成24kHz的音频,音乐风格和文本描述一致,并支持根据旋律进行条件生成。通过使用MusicCaps数据集,模型在音频质量和与文本描述的一致性方面优于之前的系统。MusicLM可以应用于不同的场景,如生成音乐片段、根据画作描述生成音乐等。
在线音频母带处理
eMastered是由葛莱美奖得主工程师打造的在线音频母带处理工具。它使用人工智能技术,快速、简单地提升音频质量。用户可以上传音轨并自动应用专业的EQ、压缩等处理,获得高质量的音频母带。eMastered提供免费试用和付费订阅两种方式,适用于音乐制作人、制作公司等各类用户。
AI音频工具,助力音乐制作
Databass AI是一家专注于音乐制作的AI音频公司。提供先进的音频处理工具,可在浏览器中使用。拥有文本转音频、音频转音频、音频分离、歌词助手和人声风格等多种功能,帮助音乐制作人释放创造力。定价信息请访问官方网站获取。
音频采样器,创造音乐节奏
ComfyUI-StableAudioSampler 是一款集成在 ComfyUI 节点中的音频采样器插件,它允许用户生成音频并输出原始字节和采样率,支持所有原始 Stable Audio Open 参数,并可以保存音频到文件。这个插件是开源的,并且正在积极开发中,旨在为音乐制作者提供一个易于使用且功能强大的工具。
音乐生成模型,实现文本转音频
MusicGen Stereo是一系列用于生成立体声音乐的模型,包括小型、中型、大型和旋律大型模型。这些模型可以将文本转换为高质量的音频,适用于各种音乐生成场景。定价根据模型规模和使用情况而定,定位于为用户提供高质量的音乐生成解决方案。
智能音频处理平台,提升音乐制作效率。
AudioForge AI是一个专注于音乐制作的智能平台,利用先进的人工智能技术,帮助音乐制作人和爱好者提高音乐创作的效率和质量。它通过自动化处理音频,减少手动调整的工作量,让创作者能够专注于音乐本身的创作。产品背景信息显示,它可能由专业的音频工程师和AI专家共同研发,旨在为音乐产业带来革命性的改变。目前产品的价格和定位尚未明确,但考虑到其技术含量和潜在的市场应用,可能面向专业音乐制作人和音乐爱好者。
音乐生成模型,结合文本和音频条件进行控制。
JASCO是一个结合了符号和基于音频的条件的文本到音乐生成模型,它能够根据全局文本描述和细粒度的局部控制生成高质量的音乐样本。JASCO基于流匹配建模范式和一种新颖的条件方法,允许音乐生成同时受到局部(例如和弦)和全局(文本描述)的控制。通过信息瓶颈层和时间模糊来提取与特定控制相关的信息,允许在同一个文本到音乐模型中结合符号和基于音频的条件。
音频智能平台™ | 面向企业和开发者的智能音乐 AI
The Audio Intelligence Platform™是一款面向企业和开发者的音频智能平台。它提供了一系列先进的 Complementary AI™ 模型,可用于音频分离、转录、混音、母带制作、生成器、编码器、效果处理等多个领域。该平台拥有用户友好的界面、强大的性能和安全保障,可为您的项目提供创新和便捷的音频解决方案。
开源的音乐生成模型
QA-MDT是一个开源的音乐生成模型,集成了最先进的模型用于音乐生成。它基于多个开源项目,如AudioLDM、PixArt-alpha、MDT、AudioMAE和Open-Sora等。QA-MDT模型通过使用不同的训练策略,能够生成高质量的音乐。此模型特别适合对音乐生成有兴趣的研究人员和开发者使用。
Online AI音频母带处理工具与聊天
DIKTATORIAL Suite是一款在线AI音频母带处理工具,通过聊天交互方式与虚拟声音工程师对话。它可以提供清晰的音频效果,支持wav和mp3等多种音频格式。用户可以描述他们希望达到的音频效果,调整音频参数以满足个人喜好。DIKTATORIAL Suite的优势包括即时优化,适用于流媒体平台,安全可靠等。定价根据不同的套餐选项而定。DIKTATORIAL Suite适用于音频专业人员、音乐家、母带工程师以及初学者。
基于文本提示生成可变长度立体声音频的AI模型。
Stable Audio Open 1.0是一个利用自编码器、基于T5的文本嵌入和基于变压器的扩散模型来生成长达47秒的立体声音频的AI模型。它通过文本提示生成音乐和音频,支持研究和实验,以探索生成性AI模型的当前能力。该模型在Freesound和Free Music Archive (FMA)的数据集上进行训练,确保了数据的多样性和版权合法性。
免费人声分离工具 分离伴奏背景音乐提取
终极人声去除GUI是一款使用深度神经网络技术的人声去除工具。其核心开发者训练了所有提供的模型,除了Demucs v3和v4 4声道模型。该应用使用先进的源分离模型从音频文件中去除人声。无需额外的先决条件即可有效运行。适用于Windows 10及以上版本。
音乐生成模型,通过控制网络进行微调。
Stable Audio ControlNet 是一个基于 Stable Audio Open 的音乐生成模型,通过 DiT ControlNet 进行微调,能够在具有 16GB VRAM 的 GPU 上使用,支持音频控制。此模型仍在开发中,但已经能够实现音乐的生成和控制,具有重要的技术意义和应用前景。
使用文本生成音乐的模型
FluxMusic是一个基于PyTorch实现的文本到音乐生成模型,它通过扩散式修正流变换器探索了一种简单的文本到音乐生成方法。这个模型可以生成根据文本提示的音乐片段,具有创新性和高度的技术复杂性。它代表了音乐生成领域的前沿技术,为音乐创作提供了新的可能。
视频到音频生成模型
vta-ldm是一个专注于视频到音频生成的深度学习模型,能够根据视频内容生成语义和时间上与视频输入对齐的音频内容。它代表了视频生成领域的一个新突破,特别是在文本到视频生成技术取得显著进展之后。该模型由腾讯AI实验室的Manjie Xu等人开发,具有生成与视频内容高度一致的音频的能力,对于视频制作、音频后期处理等领域具有重要的应用价值。
Kimi-Audio 是一个开源音频基础模型,擅长音频理解与生成。
Kimi-Audio 是一个先进的开源音频基础模型,旨在处理多种音频处理任务,如语音识别和音频对话。该模型在超过 1300 万小时的多样化音频数据和文本数据上进行了大规模预训练,具有强大的音频推理和语言理解能力。它的主要优点包括优秀的性能和灵活性,适合研究人员和开发者进行音频相关的研究与开发。
一种用于生成图像的深度学习模型。
SD3-Controlnet-Canny 是一种基于深度学习的图像生成模型,它能够根据用户提供的文本提示生成具有特定风格的图像。该模型利用控制网络技术,可以更精确地控制生成图像的细节和风格,从而提高图像生成的质量和多样性。
高效并行音频生成技术
SoundStorm是由Google Research开发的一种音频生成技术,它通过并行生成音频令牌来大幅减少音频合成的时间。这项技术能够生成高质量、与语音和声学条件一致性高的音频,并且可以与文本到语义模型结合,控制说话内容、说话者声音和说话轮次,实现长文本的语音合成和自然对话的生成。SoundStorm的重要性在于它解决了传统自回归音频生成模型在处理长序列时推理速度慢的问题,提高了音频生成的效率和质量。
MVSEP能够将音频中的语音和音乐部分分离。
MVSEP是一款在线音频处理工具,利用先进的音频分离技术可将音乐和语音从音频文件中分离出来,适用于音乐制作、音频编辑、广播、电影后期制作等领域。优点包括高质量的音频输出、快速的处理速度和用户友好的操作界面。提供不同模型选择。
© 2025 AIbase 备案号:闽ICP备08105208号-14