需求人群:
"可用于音乐制作、卡拉OK制作等领域。"
使用场景示例:
用于制作无人声音轨
用于制作卡拉OK伴奏
用于去除音频中的人声并进行重新混音
产品特色:
使用深度神经网络去除音频文件中的人声
包含界面、Python、PyTorch和其他必要的依赖项
无需额外的先决条件即可有效运行
浏览量:83
最新流量情况
月访问量
5.16m
平均访问时长
00:06:42
每次访问页数
5.81
跳出率
37.20%
流量来源
直接访问
52.27%
自然搜索
32.92%
邮件
0.05%
外链引荐
12.52%
社交媒体
2.15%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
11.99%
德国
3.63%
印度
9.20%
俄罗斯
5.25%
美国
19.02%
免费人声分离工具 分离伴奏背景音乐提取
终极人声去除GUI是一款使用深度神经网络技术的人声去除工具。其核心开发者训练了所有提供的模型,除了Demucs v3和v4 4声道模型。该应用使用先进的源分离模型从音频文件中去除人声。无需额外的先决条件即可有效运行。适用于Windows 10及以上版本。
基于自然语言查询的开放领域音频源分离模型
AudioSep是一种基于自然语言查询的开放领域音频源分离模型。它由文本编码器和分离模型两个关键组件组成。我们在大规模多模态数据集上训练AudioSep,并在许多任务上广泛评估其能力,包括音频事件分离、乐器分离和语音增强。AudioSep表现出强大的分离性能和令人印象深刻的零样本泛化能力,使用音频标题或文本标签作为查询,大大优于以前的音频查询和语言查询声音分离模型。为了保证本工作的可重复性,我们将发布源代码、评估基准和预训练模型。
音频处理和生成的深度学习库
AudioCraft 是一个用于音频处理和生成的 PyTorch 库。它包含了两个最先进的人工智能生成模型:AudioGen 和 MusicGen,可以生成高质量的音频。AudioCraft 还提供了 EnCodec 音频压缩 / 分词器和 Multi Band Diffusion 解码器等功能。该库适用于音频生成的深度学习研究。
统一的开放命名实体和语音识别模型
WhisperNER是一个结合了自动语音识别(ASR)和命名实体识别(NER)的统一模型,具备零样本能力。该模型旨在作为ASR带NER的下游任务的强大基础模型,并可以在特定数据集上进行微调以提高性能。WhisperNER的重要性在于其能够同时处理语音识别和实体识别任务,提高了处理效率和准确性,尤其在多语言和跨领域的场景中具有显著优势。
使用先进AI技术从歌曲或视频中提取人声、伴奏等音频。
Mikrotakt Vocal Remover & Instrumental AI Splitter是一款利用人工智能算法从歌曲或视频文件中提取人声、伴奏、吉他、钢琴、贝斯、鼓等不同乐器的音频分离工具。它为音乐家、教育工作者和内容创作者提供了精确的音频分离工具,以增强练习、制作和教育体验。产品背景信息显示,Mikrotakt拥有超过100,000名活跃用户,处理了超过70,000小时的音频,并且分离准确率高达99.96%。价格方面,提供免费试用,并有不同级别的付费套餐供用户选择。
3D网格生成与语言模型的统一
LLaMA-Mesh是一项将大型语言模型(LLMs)预训练在文本上扩展到生成3D网格的能力的技术。这项技术利用了LLMs中已经嵌入的空间知识,并实现了对话式3D生成和网格理解。LLaMA-Mesh的主要优势在于它能够将3D网格的顶点坐标和面定义表示为纯文本,允许与LLMs直接集成而无需扩展词汇表。该技术的主要优点包括能够从文本提示生成3D网格、按需产生交错的文本和3D网格输出,以及理解和解释3D网格。LLaMA-Mesh在保持强大的文本生成性能的同时,实现了与从头开始训练的模型相当的网格生成质量。
AI云平台,为所有人服务
Kalavai是一个AI云平台,旨在为所有人提供服务。它通过集成各种AI技术,使得用户能够构建、部署和运行AI应用。Kalavai平台的主要优点是其易用性和灵活性,用户无需深入了解复杂的AI技术,即可快速构建自己的AI应用。平台背景信息显示,它支持多种语言和框架,适合不同层次的开发者使用。目前,Kalavai提供免费试用,具体价格和定位需要进一步了解。
人脸匿名化技术,保留关键细节同时有效保护隐私。
face_anon_simple是一个人脸匿名化技术,旨在通过先进的算法在保护个人隐私的同时保留原始照片中的面部表情、头部姿势、眼神方向和背景元素。这项技术对于需要发布包含人脸的图片但又希望保护个人隐私的场合非常有用,比如在新闻报道、社交媒体和安全监控等领域。产品基于开源代码,允许用户自行部署和使用,具有很高的灵活性和应用价值。
图像水印技术,可在图片中嵌入局部化水印信息
Watermark Anything是一个由Facebook Research开发的图像水印技术,它允许在图片中嵌入一个或多个局部化水印信息。这项技术的重要性在于它能够在保证图像质量的同时,实现对图像内容的版权保护和追踪。该技术背景是基于深度学习和图像处理的研究,主要优点包括高鲁棒性、隐蔽性和灵活性。产品定位为研究和开发用途,目前是免费提供给学术界和开发者使用。
基于Gradio的实时人像动画Web界面
AdvancedLivePortrait-WebUI是一个基于Gradio框架开发的Web界面,用于实时人像动画编辑。该技术允许用户通过上传图片来编辑人物的面部表情,实现了高效的肖像动画制作。它基于LivePortrait算法,利用深度学习技术进行面部特征的捕捉和动画制作,具有操作简便、效果逼真的优点。产品背景信息显示,它是由jhj0517开发的开源项目,适用于需要进行人像动画制作的专业人士和爱好者。目前该项目是免费的,并且开源,用户可以自由使用和修改。
基于文本生成服装图像的AI模型
FLUX.1-dev LoRA Outfit Generator是一个文本到图像的AI模型,能够根据用户详细描述的颜色、图案、合身度、风格、材质和类型来生成服装。该模型使用了H&M Fashion Captions Dataset数据集进行训练,并基于Ostris的AI Toolkit进行开发。它的重要性在于能够辅助设计师快速实现设计想法,加速服装行业的创新和生产流程。
一款通过纯语言模型实现的文本到语音合成模型
OuteTTS-0.1-350M是一款基于纯语言模型的文本到语音合成技术,它不需要外部适配器或复杂架构,通过精心设计的提示和音频标记实现高质量的语音合成。该模型基于LLaMa架构,使用350M参数,展示了直接使用语言模型进行语音合成的潜力。它通过三个步骤处理音频:使用WavTokenizer进行音频标记化、CTC强制对齐创建精确的单词到音频标记映射、以及遵循特定格式的结构化提示创建。OuteTTS的主要优点包括纯语言建模方法、声音克隆能力、与llama.cpp和GGUF格式的兼容性。
构建视频搜索和摘要代理,提取视频洞察
NVIDIA Video Search and Summarization 是一个利用深度学习和人工智能技术,能够处理大量实时或存档视频,并从中提取信息以进行摘要和交互式问答的模型。该产品代表了视频内容分析和处理技术的最新进展,它通过生成式AI和视频到文本的技术,为用户提供了一种全新的视频内容管理和检索方式。NVIDIA Video Search and Summarization 的主要优点包括高效的视频内容分析、准确的摘要生成和交互式问答能力,这些功能对于需要处理大量视频数据的企业来说至关重要。产品背景信息显示,NVIDIA 致力于通过其先进的AI模型,推动视频内容的智能化处理和分析。
语音合成工具,提供高质量的语音生成服务
Fish Speech是一款专注于语音合成的产品,它通过使用先进的深度学习技术,能够将文本转换为自然流畅的语音。该产品支持多种语言,包括中文、英文等,适用于需要文本到语音转换的场景,如语音助手、有声读物制作等。Fish Speech以其高质量的语音输出、易用性和灵活性为主要优点,背景信息显示,该产品不断更新,增加了数据集大小,并改进了量化器的参数,以提供更好的服务。
开源的全双工音频生成基础模型
hertz-dev是Standard Intelligence开源的全双工、仅音频的变换器基础模型,拥有85亿参数。该模型代表了可扩展的跨模态学习技术,能够将单声道16kHz语音转换为8Hz潜在表示,具有1kbps的比特率,性能优于其他音频编码器。hertz-dev的主要优点包括低延迟、高效率和易于研究人员进行微调和构建。产品背景信息显示,Standard Intelligence致力于构建对全人类有益的通用智能,而hertz-dev是这一旅程的第一步。
高精度环境音频信息捕捉与生成的语音转语音模型
Fish Agent V0.1 3B是一个开创性的语音转语音模型,能够以前所未有的精确度捕捉和生成环境音频信息。该模型采用了无语义标记架构,消除了传统语义编码器/解码器的需求。此外,它还是一个尖端的文本到语音(TTS)模型,训练数据涵盖了700,000小时的多语言音频内容。作为Qwen-2.5-3B-Instruct的继续预训练版本,它在200B语音和文本标记上进行了训练。该模型支持包括英语、中文在内的8种语言,每种语言的训练数据量不同,其中英语和中文各约300,000小时,其他语言各约20,000小时。
在浏览器中直接运行的AI工具箱
Browser AI Kit是一个集成了多种AI工具的平台,用户可以在浏览器中直接使用这些工具,无需安装或设置。它提供了音频转文本、去除背景、文本转语音等多种功能,并且完全免费。这个工具箱基于Transformers.js开发,强调数据安全和隐私保护,所有数据处理都在本地进行,不上传任何服务器。它的目标是为用户提供一个便捷、安全、多功能的AI工具平台。
下一代语音AI,提供卓越的音频数据处理能力。
Universal-2是AssemblyAI推出的最新语音识别模型,它在准确度和精确度上超越了前一代Universal-1,能够更好地捕捉人类语言的复杂性,为用户提供无需二次检查的音频数据。这一技术的重要性在于它能够为产品体验提供更敏锐的洞察力、更快的工作流程和一流的产品体验。Universal-2在专有名词识别、文本格式化和字母数字识别方面都有显著提升,减少了实际应用中的词错误率。
高容量真实世界图像修复与隐私安全数据管理
DreamClear是一个专注于高容量真实世界图像修复的深度学习模型,它通过隐私安全的数据管理技术,提供了一种高效的图像超分辨率和修复解决方案。该模型在NeurIPS 2024上被提出,主要优点包括高容量处理能力、隐私保护以及实际应用中的高效性。DreamClear的背景信息显示,它是基于先前工作的改进,并且提供了多种预训练模型和代码,以便于研究者和开发者使用。产品是免费的,定位于科研和工业界的图像处理需求。
8B参数变分自编码器模型,用于高效的文本到图像生成。
Flux.1 Lite是一个由Freepik发布的8B参数的文本到图像生成模型,它是从FLUX.1-dev模型中提取出来的。这个版本相较于原始模型减少了7GB的RAM使用,并提高了23%的运行速度,同时保持了与原始模型相同的精度(bfloat16)。该模型的发布旨在使高质量的AI模型更加易于获取,特别是对于消费级GPU用户。
超轻量级数字人模型,移动端实时运行
Ultralight-Digital-Human是一个超轻量级的数字人模型,可以在移动端实时运行。这个模型是开源的,据开发者所知,它是第一个如此轻量级的开源数字人模型。该模型的主要优点包括轻量级设计,适合移动端部署,以及实时运行的能力。它的背后是深度学习技术,特别是在人脸合成和声音模拟方面的应用,这使得数字人模型能够以较低的资源消耗实现高质量的表现。产品目前是免费的,主要面向技术爱好者和开发者。
基于Flux的IC-Light模型,专注于图像细节保留和风格化处理
IC-Light V2是一系列基于Flux的IC-Light模型,采用16ch VAE和原生高分辨率技术。该模型在细节保留、风格化图像处理等方面相较于前代有显著提升。它特别适合需要在保持图像细节的同时进行风格化处理的应用场景。目前,该模型以非商业性质发布,主要面向个人用户和研究者。
基于MaskGCT模型的文本到语音演示
MaskGCT TTS Demo 是一个基于MaskGCT模型的文本到语音(TTS)演示,由Hugging Face平台上的amphion提供。该模型利用深度学习技术,将文本转换为自然流畅的语音,适用于多种语言和场景。MaskGCT模型因其高效的语音合成能力和对多种语言的支持而受到关注。它不仅可以提高语音识别和合成的准确性,还能在不同的应用场景中提供个性化的语音服务。目前,该产品在Hugging Face平台上提供免费试用,具体价格和定位信息需进一步了解。
轻量级推理模型,用于生成高质量图像
Stable Diffusion 3.5是一个用于简单推理的轻量级模型,它包含了文本编码器、VAE解码器和核心MM-DiT技术。该模型旨在帮助合作伙伴组织实现SD3.5,并且可以用于生成高质量的图像。它的重要性在于其高效的推理能力和对资源的低要求,使得广泛的用户群体能够使用和享受生成图像的乐趣。该模型遵循Stability AI Community License Agreement,并且可以免费使用。
强大的图像生成模型
Stable Diffusion 3.5是Stability AI推出的一款图像生成模型,具有多种变体,包括Stable Diffusion 3.5 Large和Stable Diffusion 3.5 Large Turbo。这些模型可高度定制,能在消费级硬件上运行,并且根据Stability AI社区许可协议,可以免费用于商业和非商业用途。该模型的发布体现了Stability AI致力于让视觉媒体变革的工具更易于获取、更前沿、更自由的使命。
通过多样化合成数据和全局到局部自适应感知增强文档布局分析
DocLayout-YOLO是一个用于文档布局分析的深度学习模型,它通过多样化的合成数据和全局到局部自适应感知来增强文档布局分析的准确性和处理速度。该模型通过Mesh-candidate BestFit算法生成大规模多样化的DocSynth-300K数据集,显著提升了不同文档类型在微调性能上的表现。此外,它还提出了一个全局到局部可控的感受野模块,更好地处理文档元素的多尺度变化。DocLayout-YOLO在各种文档类型上的下游数据集上表现出色,无论是在速度还是准确性上都有显著优势。
OCR-free 文档理解的统一结构学习模型
mPLUG-DocOwl 1.5 是一个致力于OCR-free文档理解的统一结构学习模型,它通过深度学习技术实现了对文档的直接理解,无需传统的光学字符识别(OCR)过程。该模型能够处理包括文档、网页、表格和图表在内的多种类型的图像,支持结构感知的文档解析、多粒度的文本识别和定位,以及问答等功能。mPLUG-DocOwl 1.5 的研发背景是基于对文档理解自动化和智能化的需求,旨在提高文档处理的效率和准确性。该模型的开源特性也促进了学术界和工业界的进一步研究和应用。
一个用于说话人分割的工具包
DiariZen是一个基于AudioZen和Pyannote 3.1驱动的说话人分割工具包。说话人分割是音频处理中的一个关键步骤,它能够将一段音频中的不同说话人进行区分。这项技术在会议记录、电话监控、安全监听等多个领域都有广泛的应用。DiariZen的主要优点包括易于使用、高准确性和开源,使得研究人员和开发者可以自由地使用和改进它。DiariZen在GitHub上以MIT许可证发布,这意味着它是完全免费的,并且可以被商业使用。
高效3D高斯重建模型,实现大场景快速重建
Long-LRM是一个用于3D高斯重建的模型,能够从一系列输入图像中重建出大场景。该模型能在1.3秒内处理32张960x540分辨率的源图像,并且仅在单个A100 80G GPU上运行。它结合了最新的Mamba2模块和传统的transformer模块,通过高效的token合并和高斯修剪步骤,在保证质量的同时提高了效率。与传统的前馈模型相比,Long-LRM能够一次性重建整个场景,而不是仅重建场景的一小部分。在大规模场景数据集上,如DL3DV-140和Tanks and Temples,Long-LRM的性能可与基于优化的方法相媲美,同时效率提高了两个数量级。
© 2024 AIbase 备案号:闽ICP备08105208号-14