需求人群:
"Kimi-Audio 适合研究人员、音频工程师和开发者,他们需要一个强大而灵活的音频处理工具,能够支持各种音频分析和生成任务。该模型的开源特性使得用户可以根据自身的需求进行定制和扩展,适用于音频相关的科研和商业应用。"
使用场景示例:
在语音助手中集成 Kimi-Audio,提升其对用户语音指令的理解能力。
利用 Kimi-Audio 进行音频内容的自动转录,为播客和视频内容提供字幕。
通过 Kimi-Audio 实现基于音频的情感识别,增强用户交互体验。
产品特色:
多种音频处理能力:支持语音识别、音频问答、音频字幕生成等任务。
出色的性能:在多个音频基准测试上取得了 SOTA 结果。
大规模预训练:在多种类型的音频和文本数据上进行训练,增强模型的理解能力。
创新架构:采用混合音频输入和 LLM 核心,能够同时处理文本和音频输入。
高效推理:具有基于流匹配的块级流式解码器,支持低延迟音频生成。
开源社区支持:提供代码、模型检查点和全面的评估工具包,推动社区研究与发展。
用户友好的接口:简化了模型的使用流程,方便用户上手。
灵活的参数设置:允许用户根据需求调整音频和文本的生成参数。
使用教程:
1. 从 GitHub 页面下载 Kimi-Audio 模型和代码。
2. 安装所需的依赖库,确保环境设置正确。
3. 加载模型并设置采样参数。
4. 准备音频输入或对话信息。
5. 调用模型的生成接口,传入准备好的消息和参数。
6. 处理模型输出,获取文本或音频结果。
7. 根据需要调整参数,优化模型表现。
浏览量:153
最新流量情况
月访问量
4.92m
平均访问时长
00:06:33
每次访问页数
6.11
跳出率
36.20%
流量来源
直接访问
51.61%
自然搜索
33.46%
邮件
0.04%
外链引荐
12.58%
社交媒体
2.19%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
12.55%
德国
3.84%
印度
9.38%
俄罗斯
4.61%
美国
18.64%
基于Linux环境快速部署开源大模型的教程
该项目是一个围绕开源大模型的全流程指导教程,包括环境配置、模型部署、高效微调等,简化开源大模型的使用和应用,让更多普通学习者能够使用开源大模型。项目面向对开源大模型感兴趣且想自主上手的学习者,提供详细的环境配置、模型部署和微调方法。
ComfyUI节点,用于MMAudio模型的音频处理
ComfyUI-MMAudio是一个基于ComfyUI的插件,它允许用户利用MMAudio模型进行音频处理。该插件的主要优点在于能够提供高质量的音频生成和处理能力,支持多种音频模型,并且易于集成到现有的音频处理流程中。产品背景信息显示,它是由kijai开发的,并且是开源的,可以在GitHub上找到。目前,该插件主要面向技术爱好者和音频处理专业人士,可以免费使用。
Kimi-Audio 是一个开源音频基础模型,擅长音频理解与生成。
Kimi-Audio 是一个先进的开源音频基础模型,旨在处理多种音频处理任务,如语音识别和音频对话。该模型在超过 1300 万小时的多样化音频数据和文本数据上进行了大规模预训练,具有强大的音频推理和语言理解能力。它的主要优点包括优秀的性能和灵活性,适合研究人员和开发者进行音频相关的研究与开发。
开源的全双工音频生成基础模型
hertz-dev是Standard Intelligence开源的全双工、仅音频的变换器基础模型,拥有85亿参数。该模型代表了可扩展的跨模态学习技术,能够将单声道16kHz语音转换为8Hz潜在表示,具有1kbps的比特率,性能优于其他音频编码器。hertz-dev的主要优点包括低延迟、高效率和易于研究人员进行微调和构建。产品背景信息显示,Standard Intelligence致力于构建对全人类有益的通用智能,而hertz-dev是这一旅程的第一步。
开源音频样本和声音设计模型
Stable Audio Open是一个开源的文本到音频模型,专为生成短音频样本、音效和制作元素而优化。它允许用户通过简单的文本提示生成高达47秒的高质量音频数据,特别适用于创造鼓点、乐器即兴演奏、环境声音、拟音录音等音乐制作和声音设计。开源发布的关键好处是用户可以根据自己的自定义音频数据微调模型。
Stability AI 生成模型是一个开源的生成模型库。
Stability AI 生成模型是一个开源的生成模型库,提供了各种生成模型的训练、推理和应用功能。该库支持各种生成模型的训练,包括基于 PyTorch Lightning 的训练,提供了丰富的配置选项和模块化的设计。用户可以使用该库进行生成模型的训练,并通过提供的模型进行推理和应用。该库还提供了示例训练配置和数据处理的功能,方便用户进行快速上手和定制。
AI音频母带处理
Mastermallow AI Audio Mastering是一个智能音频母带处理服务,旨在为内容创作者、音乐家和播客人士提供专业的音频处理。通过AI技术,将您的歌曲、播客等转化为行业级音频轨道。无需预约,快速完成。相较于传统的专业音频工程师,成本降低了20倍,速度提高了100倍。不满意不付款。
阿里云推出的大型音频语言模型
Qwen2-Audio是由阿里云提出的大型音频语言模型,能够接受各种音频信号输入,并根据语音指令进行音频分析或直接文本回复。该模型支持两种不同的音频交互模式:语音聊天和音频分析。它在13个标准基准测试中表现出色,包括自动语音识别、语音到文本翻译、语音情感识别等。
在线音频母带处理
eMastered是由葛莱美奖得主工程师打造的在线音频母带处理工具。它使用人工智能技术,快速、简单地提升音频质量。用户可以上传音轨并自动应用专业的EQ、压缩等处理,获得高质量的音频母带。eMastered提供免费试用和付费订阅两种方式,适用于音乐制作人、制作公司等各类用户。
Online AI音频母带处理工具与聊天
DIKTATORIAL Suite是一款在线AI音频母带处理工具,通过聊天交互方式与虚拟声音工程师对话。它可以提供清晰的音频效果,支持wav和mp3等多种音频格式。用户可以描述他们希望达到的音频效果,调整音频参数以满足个人喜好。DIKTATORIAL Suite的优势包括即时优化,适用于流媒体平台,安全可靠等。定价根据不同的套餐选项而定。DIKTATORIAL Suite适用于音频专业人员、音乐家、母带工程师以及初学者。
音频处理和生成的深度学习库
AudioCraft 是一个用于音频处理和生成的 PyTorch 库。它包含了两个最先进的人工智能生成模型:AudioGen 和 MusicGen,可以生成高质量的音频。AudioCraft 还提供了 EnCodec 音频压缩 / 分词器和 Multi Band Diffusion 解码器等功能。该库适用于音频生成的深度学习研究。
快速、准确、免费的音频转文字服务
AIbase音频提取文字工具利用人工智能技术,通过机器学习模型快速生成高质量的音频文本描述,优化文本排版,提升可读性,同时完全免费使用,无需安装、下载或付款,为创意人员提供便捷的基础服务。
音频采样器,创造音乐节奏
ComfyUI-StableAudioSampler 是一款集成在 ComfyUI 节点中的音频采样器插件,它允许用户生成音频并输出原始字节和采样率,支持所有原始 Stable Audio Open 参数,并可以保存音频到文件。这个插件是开源的,并且正在积极开发中,旨在为音乐制作者提供一个易于使用且功能强大的工具。
高效的文本到音频生成模型
TangoFlux是一个高效的文本到音频(TTA)生成模型,拥有515M参数,能够在单个A40 GPU上仅用3.7秒生成长达30秒的44.1kHz音频。该模型通过提出CLAP-Ranked Preference Optimization (CRPO)框架,解决了TTA模型对齐的挑战,通过迭代生成和优化偏好数据来增强TTA对齐。TangoFlux在客观和主观基准测试中均实现了最先进的性能,并且所有代码和模型均开源,以支持TTA生成的进一步研究。
1.8B语言模型,开源免费
H2O-Danube-1.8B是一个基于1T标记训练的1.8B语言模型,遵循LLama 2和Mistral的核心原则。尽管我们的模型在训练时使用的总标记数量明显少于类似规模的参考模型,但在多个基准测试中表现出极具竞争力的指标。此外,我们还发布了一个经过监督微调和直接偏好优化训练的聊天模型。我们将H2O-Danube-1.8B以Apache 2.0许可证开放源代码,进一步将大型语言模型民主化,让更广泛的受众经济地受益。
RWKV v6 Finch 14B,开源大模型,高效处理长文本。
RWKV v6 Finch 14B是RWKV架构的第六个版本,也是该系列中最大的模型。它通过引入数据依赖性到token shift和time-mixing中,提高了处理长文本时的效率。Finch 14B模型在处理提示时,能够更好地管理其长期记忆,从而提供更广泛的应用范围。该模型是开源的,由Linux Foundation认可,并且接受社区的GPU集群时间捐赠以支持训练。
支持100万Token上下文的开源Qwen模型,适用于长序列处理任务
Qwen2.5-1M 是一款开源的人工智能语言模型,专为处理长序列任务而设计,支持最多100万Token的上下文长度。该模型通过创新的训练方法和技术优化,显著提升了长序列处理的性能和效率。它在长上下文任务中表现出色,同时保持了短文本任务的性能,是现有长上下文模型的优秀开源替代。该模型适用于需要处理大量文本数据的场景,如文档分析、信息检索等,能够为开发者提供强大的语言处理能力。
开源多模态大型语言模型,支持实时语音输入和流式音频输出。
Mini-Omni是一个开源的多模态大型语言模型,能够实现实时的语音输入和流式音频输出的对话能力。它具备实时语音到语音的对话功能,无需额外的ASR或TTS模型。此外,它还可以在思考的同时进行语音输出,支持文本和音频的同时生成。Mini-Omni通过'Audio-to-Text'和'Audio-to-Audio'的批量推理进一步增强性能。
基于PyTorch的生成式音频模型库
stable-audio-tools是一个开源的PyTorch库,提供了用于条件音频生成的生成模型的训练和推理代码。包括自动编码器、隐式扩散模型、MusicGen等。支持多GPU训练,可以生成高质量的音频。
开源视觉基础模型
InternVL通过将ViT模型扩展到60亿参数并与语言模型对齐,构建出目前最大的14B开源视觉基础模型,在视觉感知、跨模态检索、多模态对话等广泛任务上取得了32项state-of-the-art性能。
专业音频处理与编辑工具
Podcastle是一款简单易用的专业音频处理与编辑工具。它提供多轨录音、音频剪辑、智能降噪等功能,让您能够创建高质量的播客节目。同时,它还支持AI语音转文本、文本转语音等创新功能,为您的播客节目添加更多可能性。
增强文本与视觉任务处理能力的开源模型。
Mistral-Small-3.1-24B-Base-2503 是一款具有 240 亿参数的先进开源模型,支持多语言和长上下文处理,适用于文本与视觉任务。它是 Mistral Small 3.1 的基础模型,具有较强的多模态能力,适合企业需求。
基于扩散模型的文本到音频生成技术
Make-An-Audio 2是一种基于扩散模型的文本到音频生成技术,由浙江大学、字节跳动和香港中文大学的研究人员共同开发。该技术通过使用预训练的大型语言模型(LLMs)解析文本,优化了语义对齐和时间一致性,提高了生成音频的质量。它还设计了基于前馈Transformer的扩散去噪器,以改善变长音频生成的性能,并增强时间信息的提取。此外,通过使用LLMs将大量音频标签数据转换为音频文本数据集,解决了时间数据稀缺的问题。
一个完全开源的大型语言模型,提供先进的自然语言处理能力。
MAP-NEO是一个完全开源的大型语言模型,它包括预训练数据、数据处理管道(Matrix)、预训练脚本和对齐代码。该模型从零开始训练,使用了4.5T的英文和中文token,展现出与LLaMA2 7B相当的性能。MAP-NEO在推理、数学和编码等具有挑战性的任务中表现出色,超越了同等规模的模型。为了研究目的,我们致力于实现LLM训练过程的完全透明度,因此我们全面发布了MAP-NEO,包括最终和中间检查点、自训练的分词器、预训练语料库以及高效稳定的优化预训练代码库。
世界上最快的边缘部署音频语言模型
OmniAudio-2.6B是一个2.6B参数的多模态模型,能够无缝处理文本和音频输入。该模型结合了Gemma-2B、Whisper turbo和一个自定义投影模块,与传统的将ASR和LLM模型串联的方法不同,它将这两种能力统一在一个高效的架构中,以最小的延迟和资源开销实现。这使得它能够安全、快速地在智能手机、笔记本电脑和机器人等边缘设备上直接处理音频文本。
Google推出的一系列轻量级、先进的开放式模型
Gemma是Google推出的一系列开源的轻量级语言模型系列。它结合了全面的安全措施,在尺寸上实现了优异的性能,甚至超过了一些较大的开放模型。可以无缝兼容各种框架。提供快速入门指南、基准测试、模型获取等,帮助开发者负责任地开发AI应用。
© 2025 AIbase 备案号:闽ICP备08105208号-14