需求人群:
"目标受众为需要高质量语音合成技术的开发者和企业,如语音助手、有声读物制作、自动新闻播报等。OuteTTS-0.1-350M以其纯语言模型的方法简化了语音合成流程,降低了技术门槛,使得更多的开发者和企业能够利用这一技术,提高生产效率和用户体验。"
使用场景示例:
开发者使用OuteTTS-0.1-350M为语音助手提供自然流畅的语音输出。
有声读物制作者利用该模型将文本内容转换为高质量的有声书。
新闻机构使用OuteTTS-0.1-350M自动将新闻稿转换为新闻播报语音。
产品特色:
纯语言建模方法实现文本到语音合成
声音克隆能力,可以创建具有特定声音特征的语音输出
基于LLaMa架构,利用350M参数的模型
与llama.cpp和GGUF格式兼容,便于集成和使用
通过音频标记化和CTC强制对齐实现精确的语音合成
结构化提示创建,提高语音合成的准确性和自然度
支持较短句子的高效语音合成,长文本需分割处理
使用教程:
1. 安装OuteTTS:通过pip安装outetts库。
2. 初始化接口:选择使用Hugging Face模型或GGUF模型,并初始化接口。
3. 生成语音:输入文本并设置相关参数,如温度、重复惩罚等,调用接口生成语音。
4. 播放语音:使用接口的播放功能直接播放生成的语音。
5. 保存语音:将生成的语音保存为文件,如WAV格式。
6. 声音克隆:创建自定义说话者并使用该声音生成语音。
浏览量:132
最新流量情况
月访问量
675
平均访问时长
00:00:34
每次访问页数
1.53
跳出率
60.68%
流量来源
直接访问
81.05%
自然搜索
9.45%
邮件
0.03%
外链引荐
5.64%
社交媒体
3.46%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
美国
100.00%
一款通过纯语言模型实现的文本到语音合成模型
OuteTTS-0.1-350M是一款基于纯语言模型的文本到语音合成技术,它不需要外部适配器或复杂架构,通过精心设计的提示和音频标记实现高质量的语音合成。该模型基于LLaMa架构,使用350M参数,展示了直接使用语言模型进行语音合成的潜力。它通过三个步骤处理音频:使用WavTokenizer进行音频标记化、CTC强制对齐创建精确的单词到音频标记映射、以及遵循特定格式的结构化提示创建。OuteTTS的主要优点包括纯语言建模方法、声音克隆能力、与llama.cpp和GGUF格式的兼容性。
高性能的文本到语音合成模型
OuteTTS-0.2-500M是基于Qwen-2.5-0.5B构建的文本到语音合成模型,它在更大的数据集上进行了训练,实现了在准确性、自然度、词汇量、声音克隆能力以及多语言支持方面的显著提升。该模型特别感谢Hugging Face提供的GPU资助,支持了模型的训练。
多语言可控文本到语音合成工具包
ToucanTTS是由德国斯图加特大学自然语言处理研究所开发的多语言且可控的文本到语音合成工具包。它使用纯Python和PyTorch构建,以保持简单、易于上手,同时尽可能强大。该工具包支持教学、训练和使用最前沿的语音合成模型,具有高度的灵活性和可定制性,适用于教育和研究领域。
将文本转换为自然流畅的语音输出
文本转语音技术是一种将文本信息转换为语音的技术,广泛应用于辅助阅读、语音助手、有声读物制作等领域。它通过模拟人类语音,提高了信息获取的便捷性,尤其对视力障碍者或在无法使用眼睛阅读的情况下非常有帮助。
轻量级端到端文本到语音模型
OptiSpeech是一个高效、轻量级且快速的文本到语音模型,专为设备端文本到语音转换设计。它利用了先进的深度学习技术,能够将文本转换为自然听起来的语音,适合需要在移动设备或嵌入式系统中实现语音合成的应用。OptiSpeech的开发得到了Pneuma Solutions提供的GPU资源支持,显著加速了开发进程。
让应用通过语音与文本的转换实现智能交互。
Azure 认知服务语音是微软推出的一款语音识别与合成服务,支持超过100种语言和方言的语音转文本和文本转语音功能。它通过创建可处理特定术语、背景噪音和重音的自定义语音模型,提高听录的准确度。此外,该服务还支持实时语音转文本、语音翻译、文本转语音等功能,适用于多种商业场景,如字幕生成、通话后听录分析、视频翻译等。
使用自得语音技术,创造属于你的角色
自得语音技术可通过简单的步骤创造出属于你的角色。类似GPT,可生成与真人无异的语音片段,在情感、音色和语速等方面与真人一致。自得语音支持快速定制角色,只需要上传一段语音即可立即生成属于你的语音角色。无需下载软件,可在浏览器上完成语音生成。同时提供API接口,方便开发者集成到自己的产品中。商用用户可享受7x24小时的技术支持。
基于深度学习的高质量文本到语音合成模型
F5-TTS是由SWivid团队开发的一个文本到语音合成(TTS)模型,它利用深度学习技术将文本转换为自然流畅、忠实于原文的语音输出。该模型在生成语音时,不仅追求高自然度,还注重语音的清晰度和准确性,适用于需要高质量语音合成的各种应用场景,如语音助手、有声读物制作、自动新闻播报等。F5-TTS模型在Hugging Face平台上发布,用户可以方便地下载和部署,支持多种语言和声音类型,具有很高的灵活性和可扩展性。
提供语音识别、语音合成等语音AI能力
依图语音开放平台为开发者提供语音识别、语音合成等语音AI能力,包括精准语音转文本、文本转语音合成、声纹识别、语音增强降噪等服务,支持不同场景下的语音交互应用开发。平台提供高效、灵活的语音AI能力接入方式,可轻松将语音技术应用于各类产品与业务场景。
人级别文本转语音合成模型
StyleTTS 2 是一款文本转语音(TTS)模型,使用大型语音语言模型(SLMs)进行风格扩散和对抗训练,实现了人级别的 TTS 合成。它通过扩散模型将风格建模为潜在随机变量,以生成最适合文本的风格,而无需参考语音。此外,我们使用大型预训练的 SLMs(如 WavLM)作为判别器,并结合我们的创新可微持续时间建模进行端到端训练,从而提高了语音的自然度。StyleTTS 2 在单说话人 LJSpeech 数据集上超越了人类录音,并在多说话人 VCTK 数据集上与之匹配,得到了母语为英语的评审人员的认可。此外,当在 LibriTTS 数据集上进行训练时,我们的模型优于先前公开可用的零样本扩展模型。通过展示风格扩散和对抗训练与大型 SLMs 的潜力,这项工作在单个和多说话人数据集上实现了一个人级别的 TTS 合成。
高效、多语种的语音合成模型
CosyVoice语音生成大模型2.0-0.5B是一个高性能的语音合成模型,支持零样本、跨语言的语音合成,能够根据文本内容直接生成相应的语音输出。该模型由通义实验室提供,具有强大的语音合成能力和广泛的应用场景,包括但不限于智能助手、有声读物、虚拟主播等。模型的重要性在于其能够提供自然、流畅的语音输出,极大地丰富了人机交互的体验。
Llasa-3B 是一个基于 LLaMA 的文本到语音合成模型,支持中英文语音生成。
Llasa-3B 是一个强大的文本到语音(TTS)模型,基于 LLaMA 架构开发,专注于中英文语音合成。该模型通过结合 XCodec2 的语音编码技术,能够将文本高效地转换为自然流畅的语音。其主要优点包括高质量的语音输出、支持多语言合成以及灵活的语音提示功能。该模型适用于需要语音合成的多种场景,如有声读物制作、语音助手开发等。其开源性质也使得开发者可以自由探索和扩展其功能。
世界上最快的文本到语音模型
Lightning是由smallest.ai开发的最新文本到语音模型,以其超快速度和小巧的体积在多模态AI中突破了性能和尺寸的界限。该模型支持英语和印地语等多种口音,并计划迅速扩展更多语言。Lightning的非自回归架构使其能够同时合成整个音频剪辑,与传统的自回归模型相比,后者需要逐步生成音频。Lightning的主要优点包括生成速度快、模型体积小、支持多语言和快速适应新数据。产品背景信息显示,Lightning的推出旨在帮助语音机器人公司大幅降低延迟和成本,通过简化其架构。价格方面,Lightning的定价从每分钟0.04美元起,对于每月使用超过100,000分钟的企业客户,提供定制定价方案。
基于MaskGCT模型的文本到语音演示
MaskGCT TTS Demo 是一个基于MaskGCT模型的文本到语音(TTS)演示,由Hugging Face平台上的amphion提供。该模型利用深度学习技术,将文本转换为自然流畅的语音,适用于多种语言和场景。MaskGCT模型因其高效的语音合成能力和对多种语言的支持而受到关注。它不仅可以提高语音识别和合成的准确性,还能在不同的应用场景中提供个性化的语音服务。目前,该产品在Hugging Face平台上提供免费试用,具体价格和定位信息需进一步了解。
一个拥有8200万参数的前沿文本到语音(TTS)模型。
Kokoro-82M是一个由hexgrad创建并托管在Hugging Face上的文本到语音(TTS)模型。它具有8200万参数,使用Apache 2.0许可证开源。该模型在2024年12月25日发布了v0.19版本,并提供了10种独特的语音包。Kokoro-82M在TTS Spaces Arena中排名第一,显示出其在参数规模和数据使用上的高效性。它支持美国英语和英国英语,可用于生成高质量的语音输出。
一个实验性的文本到语音模型
OuteTTS是一个使用纯语言建模方法生成语音的实验性文本到语音模型。它的重要性在于能够通过先进的语言模型技术,将文本转换为自然听起来的语音,这对于语音合成、语音助手和自动配音等领域具有重要意义。该模型由OuteAI开发,提供了Hugging Face模型和GGUF模型的支持,并且可以通过接口进行语音克隆等高级功能。
一个高效的语音合成模型,支持中英文及语音克隆。
MegaTTS 3 是由字节跳动开发的一款基于 PyTorch 的高效语音合成模型,具有超高质量的语音克隆能力。其轻量级架构只包含 0.45B 参数,支持中英文及代码切换,能够根据输入文本生成自然流畅的语音,广泛应用于学术研究和技术开发。
多语言文本到语音转换模型
Fish Speech V1.4是一个领先的文本到语音(TTS)模型,它在多种语言的700,000小时音频数据上进行了训练。该模型支持包括英语、中文、德语、日语、法语、西班牙语、韩语和阿拉伯语在内的8种语言,是进行多语言文本到语音转换的强大工具。
高质量、多功能的语音合成模型系列
Seed-TTS是由字节跳动推出的一系列大规模自回归文本到语音(TTS)模型,能够生成与人类语音难以区分的语音。它在语音上下文学习、说话人相似度和自然度方面表现出色,通过微调可进一步提升主观评分。Seed-TTS还提供了对情感等语音属性的优越控制能力,并能生成高度表达性和多样性的语音。此外,提出了一种自蒸馏方法用于语音分解,以及一种增强模型鲁棒性、说话人相似度和控制性的强化学习方法。还展示了Seed-TTS模型的非自回归(NAR)变体Seed-TTSDiT,它采用完全基于扩散的架构,不依赖于预先估计的音素持续时间,通过端到端处理进行语音生成。
生成高质量中文方言语音的大规模文本到语音模型。
Bailing-TTS是由Giant Network的AI Lab开发的大型文本到语音(TTS)模型系列,专注于生成高质量的中文方言语音。该模型采用持续的半监督学习和特定的Transformer架构,通过多阶段训练过程,有效对齐文本和语音标记,实现中文方言的高质量语音合成。Bailing-TTS在实验中展现出接近人类自然表达的语音合成效果,对于方言语音合成领域具有重要意义。
领先的文本到语音转换模型
Fish Speech V1.2是一款基于300,000小时的英语、中文和日语音频数据训练而成的文本到语音(TTS)模型。该模型代表了语音合成技术的最新进展,能够提供高质量的语音输出,适用于多种语言环境。
300+语音,78种语言,文本转语音
Speechki ChatGPT插件是一款支持78种语言和方言,提供300多种逼真声音选择的ChatGPT认可的文本转语音插件。将您的文本转换为高质量的音频内容,体验文本转语音的简便使用方式。立即体验Speechki,发现内容创作的未来!
将文本转换为逼真语音的在线工具
该产品是一个先进的在线文字转语音工具,使用人工智能技术将文本转换为自然逼真的语音。它支持多种语言和语音风格,适用于广告、视频旁白、有声书制作等场景,增强了内容的可访问性和吸引力。产品背景信息显示,它为数字营销人员、内容创作者、有声书作者和教育工作者提供了极大的便利。
语音合成工具,提供高质量的语音生成服务
Fish Speech是一款专注于语音合成的产品,它通过使用先进的深度学习技术,能够将文本转换为自然流畅的语音。该产品支持多种语言,包括中文、英文等,适用于需要文本到语音转换的场景,如语音助手、有声读物制作等。Fish Speech以其高质量的语音输出、易用性和灵活性为主要优点,背景信息显示,该产品不断更新,增加了数据集大小,并改进了量化器的参数,以提供更好的服务。
亚马逊的大规模语音合成模型
BASE TTS是亚马逊开发的大规模文本到语音合成模型,运用了10亿参数的自动回归转换器,可将文本转换成语音代码,再通过卷积解码器生成语音波形。该模型使用了超过10万小时的公共语音数据进行训练,实现了语音自然度的新状态。还具有音素解离和压缩等新颖的语音编码技术。随着模型规模的增大,BASE TTS展现出了处理复杂句子的自然语调能力。
一款基于多模态模型的语音翻译产品,支持近100种语言的自动语音识别、语音翻译、文本翻译、语音合成等功能。
SeamlessM4T是一款基于多模态模型的语音翻译产品,支持近100种语言的自动语音识别、语音翻译、文本翻译、语音合成等功能。该产品采用了全新的多任务UnitY模型架构,能够直接生成翻译文本和语音。SeamlessM4T的自我监督语音编码器w2v-BERT 2.0通过分析数百万小时的多语言语音,学习如何在语音中找到结构和意义。该产品还提供了SONAR、SpeechLASER等多语言语音和文本数据集,以及fairseq2等序列建模工具包。SeamlessM4T的发布,标志着AI技术在实现语音翻译方面取得了重大突破。
强大的零样本语音转换和文本到语音WebUI
GPT-SoVITS-WebUI是一个强大的零样本语音转换和文本到语音WebUI。它具有零样本TTS、少样本TTS、跨语言支持和WebUI工具等功能。该产品支持英语、日语和中文,提供了集成工具,包括语音伴奏分离、自动训练集分割、中文ASR和文本标注,帮助初学者创建训练数据集和GPT/SoVITS模型。用户可以通过输入5秒的声音样本,即可体验即时的文本到语音转换,还可以通过仅使用1分钟的训练数据对模型进行微调,以提高语音相似度和逼真度。产品支持环境准备、Python和PyTorch版本、快速安装、手动安装、预训练模型、数据集格式、待办事项和致谢。
Zonos-v0.1 是一个领先的开放权重文本到语音模型,能够生成高质量的多语言语音。
Zonos 是一个先进的文本到语音模型,支持多种语言,能够根据文本提示和说话者嵌入或音频前缀生成自然语音。它还支持语音克隆,只需几秒钟的参考音频即可准确复制说话者的声音。该模型具有高质量的语音输出(44kHz),并允许对语速、音调变化、音频质量和情绪(如快乐、恐惧、悲伤和愤怒)进行精细控制。Zonos 提供了 Python 和 Gradio 接口,方便用户快速上手,并支持通过 Docker 部署。该模型在 RTX 4090 上的实时因子约为 2 倍,适合需要高质量语音合成的应用场景。
© 2025 AIbase 备案号:闽ICP备08105208号-14