需求人群:
"该模型适合需要高质量文本到语音转换的应用开发者,如语音助手、有声读物制作、语音播报系统等。对于希望在资源受限的环境中实现高效语音合成的开发者来说,Kokoro-82M是一个理想的选择。"
使用场景示例:
为智能语音助手提供自然语言的语音输出
制作有声读物,将文本内容转换为语音朗读
在新闻播报系统中自动将新闻稿转换为语音播报
产品特色:
支持美国英语和英国英语的文本到语音转换
提供多种独特的语音包,可生成不同风格的语音
在少量参数和数据下实现高质量的语音合成
可通过ONNX格式进行高效部署
提供易于使用的API和文档,方便开发者集成
使用教程:
1. 安装依赖:在Google Colab中运行,安装必要的库和工具,如espeak-ng、phonemizer等。
2. 克隆模型仓库:从Hugging Face克隆Kokoro-82M模型仓库。
3. 构建模型并加载默认语音包:使用提供的脚本构建模型,并加载所需的语音包。
4. 生成语音:调用generate函数,传入文本和语音包,生成24khz的音频和使用的音素。
5. 播放音频并查看音素:使用IPython.display播放生成的音频,并打印输出的音素。
浏览量:145
最新流量情况
月访问量
21315.89k
平均访问时长
00:05:02
每次访问页数
5.22
跳出率
45.50%
流量来源
直接访问
49.07%
自然搜索
35.51%
邮件
0.03%
外链引荐
12.37%
社交媒体
3.00%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
14.90%
印度
8.10%
日本
3.61%
俄罗斯
5.37%
美国
18.06%
一个拥有8200万参数的前沿文本到语音(TTS)模型。
Kokoro-82M是一个由hexgrad创建并托管在Hugging Face上的文本到语音(TTS)模型。它具有8200万参数,使用Apache 2.0许可证开源。该模型在2024年12月25日发布了v0.19版本,并提供了10种独特的语音包。Kokoro-82M在TTS Spaces Arena中排名第一,显示出其在参数规模和数据使用上的高效性。它支持美国英语和英国英语,可用于生成高质量的语音输出。
AI内容生成平台,提供视频、语音和图像生成服务
Synthesys是一个AI内容生成平台,提供AI视频、AI语音和AI图像生成服务。它通过使用先进的人工智能技术,帮助用户以更低的成本和更简单的操作生成专业级别的内容。Synthesys的产品背景基于当前市场对于高质量、低成本内容生成的需求,其主要优点包括支持多种语言的超真实语音合成、无需专业设备即可生成高清视频、以及用户友好的界面设计。平台的定价策略包括免费试用和不同级别的付费服务,定位于满足不同规模企业的内容生成需求。
高性能的文本到语音合成模型
OuteTTS-0.2-500M是基于Qwen-2.5-0.5B构建的文本到语音合成模型,它在更大的数据集上进行了训练,实现了在准确性、自然度、词汇量、声音克隆能力以及多语言支持方面的显著提升。该模型特别感谢Hugging Face提供的GPU资助,支持了模型的训练。
一个实验性的文本到语音模型
OuteTTS是一个使用纯语言建模方法生成语音的实验性文本到语音模型。它的重要性在于能够通过先进的语言模型技术,将文本转换为自然听起来的语音,这对于语音合成、语音助手和自动配音等领域具有重要意义。该模型由OuteAI开发,提供了Hugging Face模型和GGUF模型的支持,并且可以通过接口进行语音克隆等高级功能。
一款通过纯语言模型实现的文本到语音合成模型
OuteTTS-0.1-350M是一款基于纯语言模型的文本到语音合成技术,它不需要外部适配器或复杂架构,通过精心设计的提示和音频标记实现高质量的语音合成。该模型基于LLaMa架构,使用350M参数,展示了直接使用语言模型进行语音合成的潜力。它通过三个步骤处理音频:使用WavTokenizer进行音频标记化、CTC强制对齐创建精确的单词到音频标记映射、以及遵循特定格式的结构化提示创建。OuteTTS的主要优点包括纯语言建模方法、声音克隆能力、与llama.cpp和GGUF格式的兼容性。
语音合成工具,提供高质量的语音生成服务
Fish Speech是一款专注于语音合成的产品,它通过使用先进的深度学习技术,能够将文本转换为自然流畅的语音。该产品支持多种语言,包括中文、英文等,适用于需要文本到语音转换的场景,如语音助手、有声读物制作等。Fish Speech以其高质量的语音输出、易用性和灵活性为主要优点,背景信息显示,该产品不断更新,增加了数据集大小,并改进了量化器的参数,以提供更好的服务。
基于MaskGCT模型的文本到语音演示
MaskGCT TTS Demo 是一个基于MaskGCT模型的文本到语音(TTS)演示,由Hugging Face平台上的amphion提供。该模型利用深度学习技术,将文本转换为自然流畅的语音,适用于多种语言和场景。MaskGCT模型因其高效的语音合成能力和对多种语言的支持而受到关注。它不仅可以提高语音识别和合成的准确性,还能在不同的应用场景中提供个性化的语音服务。目前,该产品在Hugging Face平台上提供免费试用,具体价格和定位信息需进一步了解。
无需对齐信息的零样本文本到语音转换模型
MaskGCT是一个创新的零样本文本到语音转换(TTS)模型,它通过消除显式对齐信息和音素级持续时间预测的需求,解决了自回归和非自回归系统中存在的问题。MaskGCT采用两阶段模型:第一阶段使用文本预测从语音自监督学习(SSL)模型中提取的语义标记;第二阶段,模型根据这些语义标记预测声学标记。MaskGCT遵循掩码和预测的学习范式,在训练期间学习预测基于给定条件和提示的掩码语义或声学标记。在推理期间,模型以并行方式生成指定长度的标记。实验表明,MaskGCT在质量、相似性和可理解性方面超越了当前最先进的零样本TTS系统。
基于深度学习的高质量文本到语音合成模型
F5-TTS是由SWivid团队开发的一个文本到语音合成(TTS)模型,它利用深度学习技术将文本转换为自然流畅、忠实于原文的语音输出。该模型在生成语音时,不仅追求高自然度,还注重语音的清晰度和准确性,适用于需要高质量语音合成的各种应用场景,如语音助手、有声读物制作、自动新闻播报等。F5-TTS模型在Hugging Face平台上发布,用户可以方便地下载和部署,支持多种语言和声音类型,具有很高的灵活性和可扩展性。
微软亚洲研究院开发的语音合成技术
VALL-E 2 是微软亚洲研究院推出的一款语音合成模型,它通过重复感知采样和分组编码建模技术,大幅提升了语音合成的稳健性与自然度。该模型能够将书面文字转化为自然语音,适用于教育、娱乐、多语言交流等多个领域,为提高无障碍性、增强跨语言交流等方面发挥重要作用。
轻量级端到端文本到语音模型
OptiSpeech是一个高效、轻量级且快速的文本到语音模型,专为设备端文本到语音转换设计。它利用了先进的深度学习技术,能够将文本转换为自然听起来的语音,适合需要在移动设备或嵌入式系统中实现语音合成的应用。OptiSpeech的开发得到了Pneuma Solutions提供的GPU资源支持,显著加速了开发进程。
生成高质量中文方言语音的大规模文本到语音模型。
Bailing-TTS是由Giant Network的AI Lab开发的大型文本到语音(TTS)模型系列,专注于生成高质量的中文方言语音。该模型采用持续的半监督学习和特定的Transformer架构,通过多阶段训练过程,有效对齐文本和语音标记,实现中文方言的高质量语音合成。Bailing-TTS在实验中展现出接近人类自然表达的语音合成效果,对于方言语音合成领域具有重要意义。
多语言可控文本到语音合成工具包
ToucanTTS是由德国斯图加特大学自然语言处理研究所开发的多语言且可控的文本到语音合成工具包。它使用纯Python和PyTorch构建,以保持简单、易于上手,同时尽可能强大。该工具包支持教学、训练和使用最前沿的语音合成模型,具有高度的灵活性和可定制性,适用于教育和研究领域。
高质量、多功能的语音合成模型系列
Seed-TTS是由字节跳动推出的一系列大规模自回归文本到语音(TTS)模型,能够生成与人类语音难以区分的语音。它在语音上下文学习、说话人相似度和自然度方面表现出色,通过微调可进一步提升主观评分。Seed-TTS还提供了对情感等语音属性的优越控制能力,并能生成高度表达性和多样性的语音。此外,提出了一种自蒸馏方法用于语音分解,以及一种增强模型鲁棒性、说话人相似度和控制性的强化学习方法。还展示了Seed-TTS模型的非自回归(NAR)变体Seed-TTSDiT,它采用完全基于扩散的架构,不依赖于预先估计的音素持续时间,通过端到端处理进行语音生成。
AI ContentCraft 是一个多功能内容创作工具,集成了文本生成、语音合成和图像生成能力。
AI ContentCraft 是一个强大的内容创作平台,旨在帮助创作者快速生成故事、播客脚本和多媒体内容。它通过集成文本生成、语音合成和图像生成技术,为创作者提供一站式的解决方案。该工具支持中英文内容转换,适合需要高效创作的用户。其技术栈包括 DeepSeek AI、Kokoro TTS 和 Replicate API,确保高质量的内容生成。产品目前开源免费,适合个人和团队使用。
Hailuo AI Audio是一款创建逼真语音的音频合成工具。
Hailuo AI Audio利用先进的语音合成技术,将文本转换为自然流畅的语音。其主要优点是能够生成高质量、富有表现力的语音,适用于多种场景,如有声读物制作、语音播报等。该产品定位为专业级音频合成工具,目前提供限时免费体验,旨在为用户提供高效、便捷的语音生成解决方案。
基于Kokoro和ONNX运行时的文本到语音(TTS)项目。
kokoro-onnx是一个基于Kokoro模型和ONNX运行时的文本到语音(TTS)项目。它支持英语,并计划支持法语、日语、韩语和中文。该模型在macOS M1上具有接近实时的快速性能,并提供多种声音选择,包括耳语。模型轻量级,约为300MB(量化后约为80MB)。该项目在GitHub上开源,采用MIT许可证,方便开发者集成和使用。
一个简单的检索增强生成框架,使小型模型通过异构图索引和轻量级拓扑增强检索实现良好的RAG性能。
MiniRAG是一个针对小型语言模型设计的检索增强生成系统,旨在简化RAG流程并提高效率。它通过语义感知的异构图索引机制和轻量级的拓扑增强检索方法,解决了小型模型在传统RAG框架中性能受限的问题。该模型在资源受限的场景下具有显著优势,如在移动设备或边缘计算环境中。MiniRAG的开源特性也使其易于被开发者社区接受和改进。
MatterGen是一个利用生成式AI进行材料设计的工具。
MatterGen是微软研究院推出的一种生成式AI工具,用于材料设计。它能够根据应用的设计要求直接生成具有特定化学、机械、电子或磁性属性的新型材料,为材料探索提供了新的范式。该工具的出现有望加速新型材料的研发进程,降低研发成本,并在电池、太阳能电池、CO2吸附剂等领域发挥重要作用。目前,MatterGen的源代码已在GitHub上开源,供公众使用和进一步开发。
将电子书转换为有声书的工具。
Audiblez是一个利用Kokoro高质量语音合成技术,将普通电子书(.epub格式)转换为.m4b格式有声书的工具。它支持多种语言和声音,用户可以通过简单的命令行操作完成转换,极大地丰富了电子书的阅读体验,尤其适合在开车、运动等不方便阅读的场景下使用。该工具由Claudio Santini在2025年开发,遵循MIT许可证免费开源。
一种可扩展的内存层实现,用于在不增加计算量的情况下扩展模型参数.
Memory Layers at Scale 是一种创新的内存层实现方式,通过可训练的键值查找机制,在不增加浮点运算次数的情况下为模型增加额外的参数。这种方法在大规模语言模型中尤为重要,因为它能够在保持计算效率的同时,显著提升模型的存储和检索能力。该技术的主要优点包括高效扩展模型容量、降低计算资源消耗以及提高模型的灵活性和可扩展性。该项目由 Meta Lingua 团队开发,适用于需要处理大规模数据和复杂模型的场景。
开源幻觉评估模型
Llama-3-Patronus-Lynx-8B-Instruct是由Patronus AI开发的一个基于meta-llama/Meta-Llama-3-8B-Instruct模型的微调版本,主要用于检测在RAG设置中的幻觉。该模型训练于包含CovidQA、PubmedQA、DROP、RAGTruth等多个数据集,包含人工标注和合成数据。它能够评估给定文档、问题和答案是否忠实于文档内容,不提供文档之外的新信息,也不与文档信息相矛盾。
个性化圣诞祝福视频制作平台
Text to Santa Videos by Gan.AI是一个在线平台,允许用户创建个性化的圣诞老人视频,为亲人和朋友带去节日的问候。该平台通过节日主题的虚拟形象、个性化剧本和直接发送到邮箱的视频,提供了一种新颖的个性化视频制作和分享方式。它结合了最新的人工智能技术,如文本到语音和头像APIs,以及视频录制和个性化功能,使得用户可以大规模地录制和个性化视频。产品背景信息显示,该平台已经为成千上万的客户生成了数百万视频,并且具有强大的功能,如AI唇形同步和声音克隆、免费视频录制器、AI着陆页等。价格方面,用户可以免费开始使用,具体定价信息需要访问官方网站查询。
一个展示Gemini 2.0原生音频能力的实验性文本编辑器
Voice Cursor是一个基于Gemini 2.0原生音频能力的实验性文本编辑器,它展示了如何将Gemini的新文本到语音API集成到文本编辑器中,以实现流畅、上下文的声音生成。这个项目不仅展示了Gemini 2.0的强大新功能,还提供了一个实际应用的示例,允许开发者和用户探索和利用这一新技术。产品背景信息包括Google Creative Lab的创新项目,旨在推动技术边界并提供新的交互方式。产品目前是免费的,主要面向开发者和技术爱好者,适合那些寻求创新解决方案以提高生产力和无障碍访问的个人或团队。
视频水印开源模型,用于验证视频来源。
Meta Video Seal是一个先进的开源视频水印模型,能够在视频编辑后仍嵌入持久、不可见的水印。随着AI生成内容的增加,验证视频来源变得至关重要。Video Seal通过嵌入隐形水印,即使在视频被编辑后,也能保持水印的完整性,这对于版权保护和内容验证具有重要意义。
AI名人声音生成器,让文字变声音。
Voxdazz是一个利用人工智能技术模仿名人声音的在线平台。用户可以选择名人的声音模板,输入想要说的话,Voxdazz将生成相应的视频。这项技术基于复杂的算法,能够模拟自然的语调、节奏和强调,非常接近人类的语音。它不仅适用于娱乐和幽默视频的制作,还可以用于分享模仿名人的搞笑内容。Voxdazz以其高质量的语音生成和用户友好的操作界面,为用户提供了一个全新的娱乐和创意表达方式。
快速生成类人语音的TTS模型
Flash是ElevenLabs最新推出的文本转语音(Text-to-Speech, TTS)模型,它以75毫秒加上应用和网络延迟的速度生成语音,是低延迟、会话型语音代理的首选模型。Flash v2仅支持英语,而Flash v2.5支持32种语言,每两个字符消耗1个信用点。Flash在盲测中持续超越了同类超低延迟模型,是速度最快且具有质量保证的模型。
Google DeepMind开发的高性能AI模型
Gemini 2.0 Flash Experimental是Google DeepMind开发的最新AI模型,旨在提供低延迟和增强性能的智能代理体验。该模型支持原生工具使用,并首次能够原生创建图像和生成语音,代表了AI技术在理解和生成多媒体内容方面的重要进步。Gemini Flash模型家族以其高效的处理能力和广泛的应用场景,成为推动AI领域发展的关键技术之一。
可扩展的流媒体语音合成技术,结合大型语言模型。
CosyVoice 2是由阿里巴巴集团的SpeechLab@Tongyi团队开发的语音合成模型,它基于监督离散语音标记,并结合了两种流行的生成模型:语言模型(LMs)和流匹配,实现了高自然度、内容一致性和说话人相似性的语音合成。该模型在多模态大型语言模型(LLMs)中具有重要的应用,特别是在交互体验中,响应延迟和实时因素对语音合成至关重要。CosyVoice 2通过有限标量量化提高语音标记的码本利用率,简化了文本到语音的语言模型架构,并设计了块感知的因果流匹配模型以适应不同的合成场景。它在大规模多语言数据集上训练,实现了与人类相当的合成质量,并具有极低的响应延迟和实时性。
© 2025 AIbase 备案号:闽ICP备08105208号-14