需求人群:
"目标受众包括开发者、内容创作者和企业用户。开发者可以利用Fish Speech的API快速集成语音合成功能到自己的应用中;内容创作者可以使用它来制作有声读物或视频配音;企业用户可以用于客户服务中的自动语音回复系统,提高效率和用户体验。"
使用场景示例:
案例一:有声读物制作,使用Fish Speech将流行小说文本转换为有声书。
案例二:企业客服系统,通过Fish Speech实现自动语音回复功能,提升客户服务效率。
案例三:教育领域,利用Fish Speech合成教学内容,辅助语言学习。
产品特色:
支持多种语言的语音合成,包括中文、英文等
提供不同版本的模型以适应不同的应用场景,如1.4版本增加了数据集大小
支持在Windows、Linux和macOS系统上运行
提供Docker部署方式,方便在不同环境下快速部署
支持通过WebUI进行模型训练和管理
提供API接口,方便开发者集成和使用
使用教程:
步骤一:访问Fish Speech官网并下载适合自己操作系统的安装包。
步骤二:根据官网提供的指南,创建Python虚拟环境并激活。
步骤三:安装PyTorch及相关依赖库。
步骤四:使用pip安装Fish Speech。
步骤五:根据需要,下载并安装额外的依赖,如sox、ffmpeg等。
步骤六:通过WebUI或API进行模型训练或语音合成操作。
步骤七:在项目中集成Fish Speech的API,实现文本到语音的转换功能。
浏览量:204
最新流量情况
月访问量
52.42k
平均访问时长
00:06:32
每次访问页数
7.85
跳出率
35.32%
流量来源
直接访问
48.77%
自然搜索
13.99%
邮件
0.08%
外链引荐
34.12%
社交媒体
2.51%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
24.19%
英国
5.98%
韩国
6.81%
美国
20.62%
语音合成工具,提供高质量的语音生成服务
Fish Speech是一款专注于语音合成的产品,它通过使用先进的深度学习技术,能够将文本转换为自然流畅的语音。该产品支持多种语言,包括中文、英文等,适用于需要文本到语音转换的场景,如语音助手、有声读物制作等。Fish Speech以其高质量的语音输出、易用性和灵活性为主要优点,背景信息显示,该产品不断更新,增加了数据集大小,并改进了量化器的参数,以提供更好的服务。
高性能的文本到语音合成模型
OuteTTS-0.2-500M是基于Qwen-2.5-0.5B构建的文本到语音合成模型,它在更大的数据集上进行了训练,实现了在准确性、自然度、词汇量、声音克隆能力以及多语言支持方面的显著提升。该模型特别感谢Hugging Face提供的GPU资助,支持了模型的训练。
基于MaskGCT模型的文本到语音演示
MaskGCT TTS Demo 是一个基于MaskGCT模型的文本到语音(TTS)演示,由Hugging Face平台上的amphion提供。该模型利用深度学习技术,将文本转换为自然流畅的语音,适用于多种语言和场景。MaskGCT模型因其高效的语音合成能力和对多种语言的支持而受到关注。它不仅可以提高语音识别和合成的准确性,还能在不同的应用场景中提供个性化的语音服务。目前,该产品在Hugging Face平台上提供免费试用,具体价格和定位信息需进一步了解。
基于深度学习的高质量文本到语音合成模型
F5-TTS是由SWivid团队开发的一个文本到语音合成(TTS)模型,它利用深度学习技术将文本转换为自然流畅、忠实于原文的语音输出。该模型在生成语音时,不仅追求高自然度,还注重语音的清晰度和准确性,适用于需要高质量语音合成的各种应用场景,如语音助手、有声读物制作、自动新闻播报等。F5-TTS模型在Hugging Face平台上发布,用户可以方便地下载和部署,支持多种语言和声音类型,具有很高的灵活性和可扩展性。
轻量级端到端文本到语音模型
OptiSpeech是一个高效、轻量级且快速的文本到语音模型,专为设备端文本到语音转换设计。它利用了先进的深度学习技术,能够将文本转换为自然听起来的语音,适合需要在移动设备或嵌入式系统中实现语音合成的应用。OptiSpeech的开发得到了Pneuma Solutions提供的GPU资源支持,显著加速了开发进程。
一个拥有8200万参数的前沿文本到语音(TTS)模型。
Kokoro-82M是一个由hexgrad创建并托管在Hugging Face上的文本到语音(TTS)模型。它具有8200万参数,使用Apache 2.0许可证开源。该模型在2024年12月25日发布了v0.19版本,并提供了10种独特的语音包。Kokoro-82M在TTS Spaces Arena中排名第一,显示出其在参数规模和数据使用上的高效性。它支持美国英语和英国英语,可用于生成高质量的语音输出。
AI内容生成平台,提供视频、语音和图像生成服务
Synthesys是一个AI内容生成平台,提供AI视频、AI语音和AI图像生成服务。它通过使用先进的人工智能技术,帮助用户以更低的成本和更简单的操作生成专业级别的内容。Synthesys的产品背景基于当前市场对于高质量、低成本内容生成的需求,其主要优点包括支持多种语言的超真实语音合成、无需专业设备即可生成高清视频、以及用户友好的界面设计。平台的定价策略包括免费试用和不同级别的付费服务,定位于满足不同规模企业的内容生成需求。
快速生成类人语音的TTS模型
Flash是ElevenLabs最新推出的文本转语音(Text-to-Speech, TTS)模型,它以75毫秒加上应用和网络延迟的速度生成语音,是低延迟、会话型语音代理的首选模型。Flash v2仅支持英语,而Flash v2.5支持32种语言,每两个字符消耗1个信用点。Flash在盲测中持续超越了同类超低延迟模型,是速度最快且具有质量保证的模型。
统一的开放命名实体和语音识别模型
WhisperNER是一个结合了自动语音识别(ASR)和命名实体识别(NER)的统一模型,具备零样本能力。该模型旨在作为ASR带NER的下游任务的强大基础模型,并可以在特定数据集上进行微调以提高性能。WhisperNER的重要性在于其能够同时处理语音识别和实体识别任务,提高了处理效率和准确性,尤其在多语言和跨领域的场景中具有显著优势。
一个实验性的文本到语音模型
OuteTTS是一个使用纯语言建模方法生成语音的实验性文本到语音模型。它的重要性在于能够通过先进的语言模型技术,将文本转换为自然听起来的语音,这对于语音合成、语音助手和自动配音等领域具有重要意义。该模型由OuteAI开发,提供了Hugging Face模型和GGUF模型的支持,并且可以通过接口进行语音克隆等高级功能。
一款通过纯语言模型实现的文本到语音合成模型
OuteTTS-0.1-350M是一款基于纯语言模型的文本到语音合成技术,它不需要外部适配器或复杂架构,通过精心设计的提示和音频标记实现高质量的语音合成。该模型基于LLaMa架构,使用350M参数,展示了直接使用语言模型进行语音合成的潜力。它通过三个步骤处理音频:使用WavTokenizer进行音频标记化、CTC强制对齐创建精确的单词到音频标记映射、以及遵循特定格式的结构化提示创建。OuteTTS的主要优点包括纯语言建模方法、声音克隆能力、与llama.cpp和GGUF格式的兼容性。
世界上最快的文本到语音模型
Lightning是由smallest.ai开发的最新文本到语音模型,以其超快速度和小巧的体积在多模态AI中突破了性能和尺寸的界限。该模型支持英语和印地语等多种口音,并计划迅速扩展更多语言。Lightning的非自回归架构使其能够同时合成整个音频剪辑,与传统的自回归模型相比,后者需要逐步生成音频。Lightning的主要优点包括生成速度快、模型体积小、支持多语言和快速适应新数据。产品背景信息显示,Lightning的推出旨在帮助语音机器人公司大幅降低延迟和成本,通过简化其架构。价格方面,Lightning的定价从每分钟0.04美元起,对于每月使用超过100,000分钟的企业客户,提供定制定价方案。
高精度环境音频信息捕捉与生成的语音转语音模型
Fish Agent V0.1 3B是一个开创性的语音转语音模型,能够以前所未有的精确度捕捉和生成环境音频信息。该模型采用了无语义标记架构,消除了传统语义编码器/解码器的需求。此外,它还是一个尖端的文本到语音(TTS)模型,训练数据涵盖了700,000小时的多语言音频内容。作为Qwen-2.5-3B-Instruct的继续预训练版本,它在200B语音和文本标记上进行了训练。该模型支持包括英语、中文在内的8种语言,每种语言的训练数据量不同,其中英语和中文各约300,000小时,其他语言各约20,000小时。
无需对齐信息的零样本文本到语音转换模型
MaskGCT是一个创新的零样本文本到语音转换(TTS)模型,它通过消除显式对齐信息和音素级持续时间预测的需求,解决了自回归和非自回归系统中存在的问题。MaskGCT采用两阶段模型:第一阶段使用文本预测从语音自监督学习(SSL)模型中提取的语义标记;第二阶段,模型根据这些语义标记预测声学标记。MaskGCT遵循掩码和预测的学习范式,在训练期间学习预测基于给定条件和提示的掩码语义或声学标记。在推理期间,模型以并行方式生成指定长度的标记。实验表明,MaskGCT在质量、相似性和可理解性方面超越了当前最先进的零样本TTS系统。
基于文本提示生成独特声音
ElevenLabs Voice Design是一个在线平台,允许用户通过简单的文本提示来设计和生成定制的声音。这项技术的重要性在于它能够快速创建出符合特定描述的声音,如年龄、口音、语气或角色,甚至包括虚构角色如巨魔、精灵和外星人。它为音频内容创作者、广告制作者、游戏开发者等提供了一个强大的工具,可以用于各种商业和创意项目。ElevenLabs提供了一个免费试用的机会,用户可以注册后尝试其服务。
使用Llama模型的语音合成工具
Llama 3.2 3b Voice 是基于Hugging Face平台的一款语音合成模型,能够将文本转换为自然流畅的语音。该模型采用了先进的深度学习技术,能够模仿人类说话的语调、节奏和情感,适用于多种场景,如语音助手、有声读物、自动播报等。
微软亚洲研究院开发的语音合成技术
VALL-E 2 是微软亚洲研究院推出的一款语音合成模型,它通过重复感知采样和分组编码建模技术,大幅提升了语音合成的稳健性与自然度。该模型能够将书面文字转化为自然语音,适用于教育、娱乐、多语言交流等多个领域,为提高无障碍性、增强跨语言交流等方面发挥重要作用。
多语言文本到语音转换模型
Fish Speech V1.4是一个领先的文本到语音(TTS)模型,它在多种语言的700,000小时音频数据上进行了训练。该模型支持包括英语、中文、德语、日语、法语、西班牙语、韩语和阿拉伯语在内的8种语言,是进行多语言文本到语音转换的强大工具。
生成高质量中文方言语音的大规模文本到语音模型。
Bailing-TTS是由Giant Network的AI Lab开发的大型文本到语音(TTS)模型系列,专注于生成高质量的中文方言语音。该模型采用持续的半监督学习和特定的Transformer架构,通过多阶段训练过程,有效对齐文本和语音标记,实现中文方言的高质量语音合成。Bailing-TTS在实验中展现出接近人类自然表达的语音合成效果,对于方言语音合成领域具有重要意义。
前沿AI研究和产品公司,推动通信未来。
Gan.AI是一个专注于对话式人工智能研究和产品的公司,致力于通过其先进的AI技术,为全球知名品牌提供个性化的视频和音频通信解决方案。该公司的产品和技术在个性化营销、粉丝参与、以及提升用户体验方面展现出显著的效果,已获得包括三星、可口可乐和圣安东尼奥马刺等品牌的认可和应用。
强大的AI音频API,提升项目互动性。
ElevenLabs AI音频API提供了高质量的语音合成服务,支持多种语言,适用于聊天机器人、代理、网站、应用程序等,具有低延迟和高响应速度。该API支持企业级需求,确保数据安全,符合SOC2和GDPR合规性。
领先的文本到语音转换模型
Fish Speech V1.2是一款基于300,000小时的英语、中文和日语音频数据训练而成的文本到语音(TTS)模型。该模型代表了语音合成技术的最新进展,能够提供高质量的语音输出,适用于多种语言环境。
让应用通过语音与文本的转换实现智能交互。
Azure 认知服务语音是微软推出的一款语音识别与合成服务,支持超过100种语言和方言的语音转文本和文本转语音功能。它通过创建可处理特定术语、背景噪音和重音的自定义语音模型,提高听录的准确度。此外,该服务还支持实时语音转文本、语音翻译、文本转语音等功能,适用于多种商业场景,如字幕生成、通话后听录分析、视频翻译等。
将文本转换为逼真语音的在线工具
该产品是一个先进的在线文字转语音工具,使用人工智能技术将文本转换为自然逼真的语音。它支持多种语言和语音风格,适用于广告、视频旁白、有声书制作等场景,增强了内容的可访问性和吸引力。产品背景信息显示,它为数字营销人员、内容创作者、有声书作者和教育工作者提供了极大的便利。
多语言可控文本到语音合成工具包
ToucanTTS是由德国斯图加特大学自然语言处理研究所开发的多语言且可控的文本到语音合成工具包。它使用纯Python和PyTorch构建,以保持简单、易于上手,同时尽可能强大。该工具包支持教学、训练和使用最前沿的语音合成模型,具有高度的灵活性和可定制性,适用于教育和研究领域。
高质量、多功能的语音合成模型系列
Seed-TTS是由字节跳动推出的一系列大规模自回归文本到语音(TTS)模型,能够生成与人类语音难以区分的语音。它在语音上下文学习、说话人相似度和自然度方面表现出色,通过微调可进一步提升主观评分。Seed-TTS还提供了对情感等语音属性的优越控制能力,并能生成高度表达性和多样性的语音。此外,提出了一种自蒸馏方法用于语音分解,以及一种增强模型鲁棒性、说话人相似度和控制性的强化学习方法。还展示了Seed-TTS模型的非自回归(NAR)变体Seed-TTSDiT,它采用完全基于扩散的架构,不依赖于预先估计的音素持续时间,通过端到端处理进行语音生成。
一个用于文本到语音转换的开源项目。
ChatTTS是一个开源的文本到语音转换(TTS)模型,它允许用户将文本转换为语音。该模型主要面向学术研究和教育目的,不适用于商业或法律用途。它使用深度学习技术,能够生成自然流畅的语音输出,适合研究和开发语音合成技术的人员使用。
亚马逊的大规模语音合成模型
BASE TTS是亚马逊开发的大规模文本到语音合成模型,运用了10亿参数的自动回归转换器,可将文本转换成语音代码,再通过卷积解码器生成语音波形。该模型使用了超过10万小时的公共语音数据进行训练,实现了语音自然度的新状态。还具有音素解离和压缩等新颖的语音编码技术。随着模型规模的增大,BASE TTS展现出了处理复杂句子的自然语调能力。
© 2025 AIbase 备案号:闽ICP备08105208号-14