需求人群:
"Slicedit的目标受众是视频编辑者、内容创作者和研究人员,他们需要一种能够精确控制视频内容和风格的强大工具。该技术简化了视频编辑过程,使得即使是没有专业视频编辑技能的用户也能轻松创建高质量的视频内容。"
使用场景示例:
将一个人跳跃的视频编辑为一个人形机器人跳跃。
将一只猫在草地上晒太阳的视频编辑为一只猎豹在草地上晒太阳。
将一群牛吃草的视频编辑为一群羊吃草。
产品特色:
使用预训练的文本到图像扩散模型处理空间和时空切片。
通过DDPM反演提取噪声体积和注意力图。
在特定时间步骤注入扩展的注意力图以增强时序一致性。
在源文本和目标文本提示的条件下执行反演和采样。
结合两个预测的噪声体积生成最终预测的噪声体积。
编辑示例包括人物动作到机器人动作的转换,以及动物和物体的变换。
与其他视频编辑技术进行比较,展示Slicedit的优势。
使用教程:
访问Slicedit网站并了解基本介绍。
阅读论文和补充材料以获取更深入的技术细节。
查看编辑示例,了解Slicedit能够实现的视频变换类型。
比较Slicedit与其他视频编辑技术的差异和优势。
根据个人需求,选择适合的视频编辑任务并应用Slicedit。
利用提供的代码(即将推出)来实践和自定义视频编辑过程。
浏览量:37
基于文本的视频编辑技术,使用时空切片。
Slicedit是一种零样本视频编辑技术,它利用文本到图像的扩散模型,并结合时空切片来增强视频编辑中的时序一致性。该技术能够保留原始视频的结构和运动,同时符合目标文本描述。通过广泛的实验,证明了Slicedit在编辑真实世界视频方面具有明显优势。
基于文本提示修订图像的大型扩散模型
SeedEdit是Doubao Team推出的大型扩散模型,用于根据任何文本提示修订图像。它通过逐步将图像生成器与强大的图像编辑器对齐,实现了图像重建和图像再生之间的最佳平衡。SeedEdit能够实现高审美/分辨率图像的零样本稳定编辑,并支持图像的连续修订。该技术的重要性在于其能够解决图像编辑问题中成对图像数据稀缺的核心难题,通过将文本到图像(T2I)生成模型视为弱编辑模型,并通过生成带有新提示的新图像来实现“编辑”,然后将其蒸馏并与之对齐到图像条件编辑模型中。
根据人类指令修复和编辑照片的框架
PromptFix是一个综合框架,能够使扩散模型遵循人类指令执行各种图像处理任务。该框架通过构建大规模的指令遵循数据集,提出了高频引导采样方法来控制去噪过程,并设计了辅助提示适配器,利用视觉语言模型增强文本提示,提高模型的任务泛化能力。PromptFix在多种图像处理任务中表现优于先前的方法,并在盲恢复和组合任务中展现出优越的零样本能力。
高效能的文本到图像生成模型
Stable Diffusion 3.5 Large Turbo 是一个基于文本生成图像的多模态扩散变换器(MMDiT)模型,采用了对抗性扩散蒸馏(ADD)技术,提高了图像质量、排版、复杂提示理解和资源效率,特别注重减少推理步骤。该模型在生成图像方面表现出色,能够理解和生成复杂的文本提示,适用于多种图像生成场景。它在Hugging Face平台上发布,遵循Stability Community License,适合研究、非商业用途以及年收入少于100万美元的组织或个人免费使用。
高性能的文本到图像生成模型
Stable Diffusion 3.5 Large 是一个基于文本生成图像的多模态扩散变换器(MMDiT)模型,由 Stability AI 开发。该模型在图像质量、排版、复杂提示理解和资源效率方面都有显著提升。它使用三个固定的预训练文本编码器,并通过 QK 归一化技术提高训练稳定性。此外,该模型在训练数据和策略上使用了包括合成数据和过滤后的公开可用数据。Stable Diffusion 3.5 Large 模型在遵守社区许可协议的前提下,可以免费用于研究、非商业用途,以及年收入少于100万美元的组织或个人的商业用途。
用于精确控制扩散模型中概念的低秩适配器
Concept Sliders 是一种用于精确控制扩散模型中概念的技术,它通过低秩适配器(LoRA)在预训练模型之上进行应用,允许艺术家和用户通过简单的文本描述或图像对来训练控制特定属性的方向。这种技术的主要优点是能够在不改变图像整体结构的情况下,对生成的图像进行细微调整,如眼睛大小、光线等,从而实现更精细的控制。它为艺术家提供了一种新的创作表达方式,同时解决了生成模糊或扭曲图像的问题。
利用预训练的图像到视频扩散模型生成连贯中间帧
该产品是一个图像到视频的扩散模型,通过轻量级的微调技术,能够从一对关键帧生成具有连贯运动的连续视频序列。这种方法特别适用于需要在两个静态图像之间生成平滑过渡动画的场景,如动画制作、视频编辑等。它利用了大规模图像到视频扩散模型的强大能力,通过微调使其能够预测两个关键帧之间的视频,从而实现前向和后向的一致性。
3D纹理生成技术,根据文本描述合成3D纹理
TexGen是一个创新的多视角采样和重采样框架,用于根据任意文本描述合成3D纹理。它利用预训练的文本到图像的扩散模型,通过一致性视图采样和注意力引导的多视角采样策略,以及噪声重采样技术,显著提高了3D对象的纹理质量,具有高度的视角一致性和丰富的外观细节。
异步去噪并行化扩散模型
AsyncDiff 是一种用于并行化扩散模型的异步去噪加速方案,它通过将噪声预测模型分割成多个组件并分配到不同的设备上,实现了模型的并行处理。这种方法显著减少了推理延迟,同时对生成质量的影响很小。AsyncDiff 支持多种扩散模型,包括 Stable Diffusion 2.1、Stable Diffusion 1.5、Stable Diffusion x4 Upscaler、Stable Diffusion XL 1.0、ControlNet、Stable Video Diffusion 和 AnimateDiff。
视频编辑中的手-物交互意识
HOI-Swap是一个基于扩散模型的视频编辑框架,专注于处理视频编辑中手与物体交互的复杂性。该模型通过自监督训练,能够在单帧中实现物体交换,并学习根据物体属性变化调整手的交互模式,如手的抓握方式。第二阶段将单帧编辑扩展到整个视频序列,通过运动对齐和视频生成,实现高质量的视频编辑。
一种基于图像到视频扩散模型的视频编辑技术
I2VEdit是一种创新的视频编辑技术,通过预训练的图像到视频模型,将单一帧的编辑扩展到整个视频。这项技术能够适应性地保持源视频的视觉和运动完整性,并有效处理全局编辑、局部编辑以及适度的形状变化,这是现有方法所不能实现的。I2VEdit的核心包括两个主要过程:粗略运动提取和外观细化,通过粗粒度注意力匹配进行精确调整。此外,还引入了跳过间隔策略,以减轻多个视频片段自动回归生成过程中的质量下降。实验结果表明,I2VEdit在细粒度视频编辑方面的优越性能,证明了其能够产生高质量、时间一致的输出。
一个统一的文本到任意模态生成框架
Lumina-T2X是一个先进的文本到任意模态生成框架,它能够将文本描述转换为生动的图像、动态视频、详细的多视图3D图像和合成语音。该框架采用基于流的大型扩散变换器(Flag-DiT),支持高达7亿参数,并能扩展序列长度至128,000个标记。Lumina-T2X集成了图像、视频、3D对象的多视图和语音频谱图到一个时空潜在标记空间中,可以生成任何分辨率、宽高比和时长的输出。
通过LLM增强语义对齐的扩散模型适配器
ELLA(Efficient Large Language Model Adapter)是一种轻量级方法,可将现有的基于CLIP的扩散模型配备强大的LLM。ELLA提高了模型的提示跟随能力,使文本到图像模型能够理解长文本。我们设计了一个时间感知语义连接器,从预训练的LLM中提取各种去噪阶段的时间步骤相关条件。我们的TSC动态地适应了不同采样时间步的语义特征,有助于在不同的语义层次上对U-Net进行冻结。ELLA在DPG-Bench等基准测试中表现优越,尤其在涉及多个对象组合、不同属性和关系的密集提示方面表现出色。
官方实现的自纠正LLM控制的扩散模型
SLD是一个自纠正的LLM控制的扩散模型框架,它通过集成检测器增强生成模型,以实现精确的文本到图像对齐。SLD框架支持图像生成和精细编辑,并且与任何图像生成器兼容,如DALL-E 3,无需额外训练或数据。
升级扩散模型插件通用兼容性
X-Adapter是一个通用升级工具,可以使预训练的插件模块(例如ControlNet、LoRA)直接与升级的文本到图像扩散模型(例如SD-XL)配合使用,无需进一步重新训练。通过训练额外的网络来控制冻结的升级模型,X-Adapter保留旧模型的连接器,并添加可训练的映射层以连接不同版本模型的解码器进行特征重映射。重映射的特征将作为升级模型的引导。为了增强X-Adapter的引导能力,我们采用空文本训练策略。在训练后,我们还引入了两阶段去噪策略,以调整X-Adapter和升级模型的初始潜变量。X-Adapter展示了与各种插件的通用兼容性,并使不同版本的插件能够共同工作,从而扩展了扩散社区的功能。我们进行了大量实验证明,X-Adapter可能在升级的基础扩散模型中有更广泛的应用。
将照片和视频剪辑转变为时尚、充满音乐的杰作。
Beat.ly是一款人工智能音乐视频制作器,它允许用户轻松将照片转换为带有音乐的精彩视频。产品背景信息显示,Beat.ly旨在释放用户的创作潜力,无论是初学者还是专业人士,都能通过这款应用轻松制作出专业品质的视频。Beat.ly的主要优点包括多样化的模板、3D效果和动态视频制作、快速简单的视频编辑以及一键分享到社交媒体的功能。Beat.ly的价格定位为包含广告的免费应用,但提供内购选项。
基于扩散的混合运动动态角色艺术动画生成工具
MikuDance是一个基于扩散的动画生成管道,它结合了混合运动动态来动画化风格化的角色艺术。该技术通过混合运动建模和混合控制扩散两大关键技术,解决了高动态运动和参考引导错位在角色艺术动画中的挑战。MikuDance通过场景运动跟踪策略显式地在像素级空间中建模动态相机,实现统一的角色场景运动建模。在此基础上,混合控制扩散隐式地对不同角色的尺度和体型进行对齐,允许灵活控制局部角色运动。此外,还加入了运动自适应归一化模块,有效注入全局场景运动,为全面的角色艺术动画铺平了道路。通过广泛的实验,MikuDance在各种角色艺术和运动引导下展示了其有效性和泛化能力,始终如一地产生具有显著运动动态的高质量动画。
基于LLM的智能字幕助手,一键生成高质量视频字幕
卡卡字幕助手(VideoCaptioner)是一款功能强大的视频字幕配制软件,利用大语言模型进行字幕智能断句、校正、优化、翻译,实现字幕视频全流程一键处理。产品无需高配置,操作简单,内置基础LLM模型,保证开箱即用,且消耗模型Token少,适合视频制作者和内容创作者。
Final Cut Pro 11为Mac、iPad和iPhone带来视频剪辑新体验。
Final Cut Pro 11是由Apple公司推出的一款革命性的视频编辑软件,它全面发挥了Apple M系列芯片的性能,引入了磁性蒙版、转写为字幕等基于AI的新工具,支持空间视频编辑,并提供了多种节省时间的工具和工作流优化功能。Final Cut Pro 11以其强大的功能、直观的操作和高效的工作流程,成为全球创意专业人士的首选视频编辑工具。Final Cut Pro 11的价格为RMB 1,998,新用户可下载免费90天试用版。
视频扩散模型,用于虚拟试穿。
Fashion-VDM是一个视频扩散模型(VDM),用于生成虚拟试穿视频。该模型接受一件衣物图片和人物视频作为输入,旨在生成人物穿着给定衣物的高质量试穿视频,同时保留人物的身份和动作。与传统的基于图像的虚拟试穿相比,Fashion-VDM在衣物细节和时间一致性方面表现出色。该技术的主要优点包括:扩散式架构、分类器自由引导增强控制、单次64帧512px视频生成的渐进式时间训练策略,以及联合图像-视频训练的有效性。Fashion-VDM在视频虚拟试穿领域树立了新的行业标准。
利用像素空间拉普拉斯扩散模型生成高质量图像
Edify Image是NVIDIA推出的一款图像生成模型,它能够生成具有像素级精确度的逼真图像内容。该模型采用级联像素空间扩散模型,并通过新颖的拉普拉斯扩散过程进行训练,该过程能够在不同频率带以不同的速率衰减图像信号。Edify Image支持多种应用,包括文本到图像合成、4K上采样、ControlNets、360° HDR全景图生成和图像定制微调。它代表了图像生成技术的最新进展,具有广泛的应用前景和重要的商业价值。
在线视频制作平台,提供AI虚拟形象和视频制作服务。
Yepic Studio是一个在线视频制作平台,它通过使用人工智能技术,允许用户创建和编辑视频内容,包括制作会说话的照片视频、专业视频以及AI虚拟形象。该平台的主要优点在于能够快速生成高质量的视频内容,同时提供个性化的AI虚拟形象,满足不同商业需求。产品背景信息显示,Yepic Studio旨在为内容创作者和企业提供一个简单易用的在线视频制作工具,以提高内容生产的效率和质量。关于价格,页面显示用户为'Guest'且'Credits'为0,暗示可能有免费试用或基础免费服务,具体定价需进一步查看。
Jumper是一个强大的AI视频搜索工具,帮助编辑者快速找到视频素材。
Jumper是一个专为视频编辑者设计的AI搜索工具,它能够让用户在眨眼间搜索自己的视频素材。Jumper集成到了用户的非线性编辑器(NLE)中,无需离开编辑工作流程即可找到所需素材。Jumper支持多语言搜索,能够快速定位特定词汇或短语在视频中的位置,支持多机位和同步剪辑,并且完全在设备上运行,保护用户隐私,无需上传素材至云端。Jumper的主要优点包括快速搜索、完全离线工作、保护隐私和兼容性强。产品背景信息显示,Jumper由Witchcraft Software AB开发,旨在通过AI技术提高视频编辑的效率和创造力。
Video Ocean,让每个人都能轻松制作高质量视频。
Video Ocean是一个基于人工智能模型技术的视频制作平台,提供文本生成、图像生成、音视频生成等功能。用户可以输入描述性文本、图片、音频和视频,获得定制化的AI生成文本、图片、音频和视频。该平台致力于简化视频生成的复杂性,通过提供先进的工具和详细的资源,使高质量的视频制作变得易于访问和不费力。Video Ocean的主要优点包括开放源代码、易于使用、高效生产和创新性。它通过提供100个免费币来吸引用户试用,推动内容创作的民主化,鼓励创新、创造力和包容性。
基于文本生成服装图像的AI模型
FLUX.1-dev LoRA Outfit Generator是一个文本到图像的AI模型,能够根据用户详细描述的颜色、图案、合身度、风格、材质和类型来生成服装。该模型使用了H&M Fashion Captions Dataset数据集进行训练,并基于Ostris的AI Toolkit进行开发。它的重要性在于能够辅助设计师快速实现设计想法,加速服装行业的创新和生产流程。
训练无关的区域提示扩散变换器模型
Regional-Prompting-FLUX是一种训练无关的区域提示扩散变换器模型,它能够在无需训练的情况下,为扩散变换器(如FLUX)提供细粒度的组合文本到图像生成能力。该模型不仅效果显著,而且与LoRA和ControlNet高度兼容,能够在保持高速度的同时减少GPU内存的使用。
视频编辑工具,使用Genmo Mochi技术
ComfyUI-MochiEdit是一个基于Genmo Mochi技术的视频编辑插件,允许用户通过ComfyUI界面对视频进行编辑。该插件的主要优点在于其能够利用先进的视频处理技术,提供给用户一个直观、易用的编辑环境。产品背景信息显示,它是由logtd和kijai共同开发,并且遵循GPL-3.0开源许可证。由于其开源特性,该插件可以免费使用,定位于需要视频编辑功能的专业用户或爱好者。
© 2024 AIbase 备案号:闽ICP备08105208号-14