SparseCtrl

SparseCtrl是为了增强对文本到视频生成的控制性而开发的,它能够灵活地结合稀疏信号进行结构控制,只需一个或少量输入。它包括一个额外的条件编码器来处理这些稀疏信号,同时不影响预训练的文本到视频模型。该方法兼容各种形式,包括素描、深度和RGB图像,为视频生成提供更实用的控制,并推动故事板、深度渲染、关键帧动画和插值等应用。大量实验证明了SparseCtrl在原始和个性化文本到视频生成器上的泛化能力。

需求人群:

"适用于文本到视频生成,包括故事板、深度渲染、关键帧动画和插值等应用场景"

使用场景示例:

故事板生成

深度渲染

关键帧动画生成

产品特色:

结构控制

稀疏信号处理

多种形式兼容

视频生成应用

浏览量:123

s1785318098921236

打开站点

构建AI去赚钱
s1785341518918206
网站流量情况

最新流量情况

月访问量

995

平均访问时长

00:00:02

每次访问页数

2.59

跳出率

28.90%

流量来源

直接访问

43.70%

自然搜索

56.30%

邮件

0

外链引荐

0

社交媒体

0

展示广告

0

截止目前所有流量趋势图

地理流量分布情况

加拿大

100.00%

类似产品

生成和交互控制开放世界游戏视频的扩散变换模型

GameGen-X是专为生成和交互控制开放世界游戏视频而设计的扩散变换模型。该模型通过模拟游戏引擎的多种特性,如创新角色、动态环境、复杂动作和多样事件,实现了高质量、开放领域的视频生成。此外,它还提供了交互控制能力,能够根据当前视频片段预测和改变未来内容,从而实现游戏玩法模拟。为了实现这一愿景,我们首先从零开始收集并构建了一个开放世界视频游戏数据集(OGameData),这是第一个也是最大的开放世界游戏视频生成和控制数据集,包含超过150款游戏的100多万个多样化游戏视频片段,这些片段都配有GPT-4o的信息性字幕。GameGen-X经历了两阶段的训练过程,包括基础模型预训练和指令调优。首先,模型通过文本到视频生成和视频续集进行预训练,赋予了其长序列、高质量开放领域游戏视频生成的能力。进一步,为了实现交互控制能力,我们设计了InstructNet来整合与游戏相关的多模态控制信号专家。这使得模型能够根据用户输入调整潜在表示,首次在视频生成中统一角色交互和场景内容控制。在指令调优期间,只有InstructNet被更新,而预训练的基础模型被冻结,使得交互控制能力的整合不会损失生成视频内容的多样性和质量。GameGen-X代表了使用生成模型进行开放世界视频游戏设计的一次重大飞跃。它展示了生成模型作为传统渲染技术的辅助工具的潜力,有效地将创造性生成与交互能力结合起来。

© 2024     AIbase    备案号:闽ICP备08105208号-14

隐私政策

用户协议

意见反馈 网站地图