需求人群:
"目标受众为视频内容创作者、开发者和研究人员。视频创作者可以使用CogVideoX快速生成视频素材,节省制作成本;开发者可以基于开源代码进行定制开发,拓展视频生成的应用场景;研究人员可以通过模型微调和优化,探索视频生成技术的前沿。"
使用场景示例:
使用CogVideoX生成玩具船在地毯上航行的视频。
生成一辆白色复古SUV在山路上行驶的视频。
创作一幅街头艺术家在墙上喷涂彩色鸟的动画。
制作一个战争废墟背景下小女孩的感人视频。
产品特色:
支持文本到视频的转换,生成与描述相符的视频内容。
提供不同模型尺寸的版本,以适应不同计算资源的需求。
开源代码,允许开发者进行二次开发和模型优化。
提供详细的文档和示例代码,帮助用户快速上手。
支持模型微调,以适应特定领域的视频生成需求。
提供在线体验和API接口,方便用户进行视频生成。
使用教程:
1. 访问CogVideoX的GitHub页面,了解项目背景和基本信息。
2. 阅读文档,了解模型的安装和配置要求。
3. 下载或克隆代码库,获取模型和示例代码。
4. 根据文档指导,设置环境并安装必要的依赖。
5. 运行示例代码,体验文本到视频的生成过程。
6. 学习如何自定义文本提示,生成个性化的视频内容。
7. 探索模型微调和优化的方法,以适应特定的应用需求。
8. 利用提供的API接口或Web应用,进行更高级的视频生成操作。
浏览量:102
最新流量情况
月访问量
4.75m
平均访问时长
00:06:34
每次访问页数
6.10
跳出率
36.20%
流量来源
直接访问
52.19%
自然搜索
32.64%
邮件
0.04%
外链引荐
12.93%
社交媒体
2.02%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
14.32%
德国
3.68%
印度
9.04%
俄罗斯
3.92%
美国
19.25%
Wan2.1-T2V-14B 是一款高性能的文本到视频生成模型,支持多种视频生成任务。
Wan2.1-T2V-14B 是一款先进的文本到视频生成模型,基于扩散变换器架构,结合了创新的时空变分自编码器(VAE)和大规模数据训练。它能够在多种分辨率下生成高质量的视频内容,支持中文和英文文本输入,并在性能和效率上超越现有的开源和商业模型。该模型适用于需要高效视频生成的场景,如内容创作、广告制作和视频编辑等。目前该模型在 Hugging Face 平台上免费提供,旨在推动视频生成技术的发展和应用。
文本图像到视频生成模型
Allegro-TI2V是一个文本图像到视频生成模型,它能够根据用户提供的提示和图像生成视频内容。该模型以其开源性、多样化的内容创作能力、高质量的输出、小巧高效的模型参数以及支持多种精度和GPU内存优化而受到关注。它代表了当前人工智能技术在视频生成领域的前沿进展,具有重要的技术价值和商业应用潜力。Allegro-TI2V模型在Hugging Face平台上提供,遵循Apache 2.0开源协议,用户可以免费下载和使用。
开源视频生成模型,支持10秒视频和更高分辨率。
CogVideoX1.5-5B-SAT是由清华大学知识工程与数据挖掘团队开发的开源视频生成模型,是CogVideoX模型的升级版。该模型支持生成10秒视频,并支持更高分辨率的视频生成。模型包含Transformer、VAE和Text Encoder等模块,能够根据文本描述生成视频内容。CogVideoX1.5-5B-SAT模型以其强大的视频生成能力和高分辨率支持,为视频内容创作者提供了一个强大的工具,尤其在教育、娱乐和商业领域有着广泛的应用前景。
文本到视频的生成模型
CogVideoX是一个开源的视频生成模型,与商业模型同源,支持通过文本描述生成视频内容。它代表了文本到视频生成技术的最新进展,具有生成高质量视频的能力,能够广泛应用于娱乐、教育、商业宣传等领域。
Wan 2.1 AI 是一款将文本和图像转化为高质量视频的先进 AI 视频生成模型。
Wan 2.1 AI 是由阿里巴巴开发的开源大规模视频生成 AI 模型。它支持文本到视频(T2V)和图像到视频(I2V)的生成,能够将简单的输入转化为高质量的视频内容。该模型在视频生成领域具有重要意义,能够极大地简化视频创作流程,降低创作门槛,提高创作效率,为用户提供丰富多样的视频创作可能性。其主要优点包括高质量的视频生成效果、复杂动作的流畅展现、逼真的物理模拟以及丰富的艺术风格等。目前该产品已完全开源,用户可以免费使用其基础功能,对于有视频创作需求但缺乏专业技能或设备的个人和企业来说,具有很高的实用价值。
HunyuanVideo-I2V 是腾讯推出的基于 HunyuanVideo 的图像到视频生成框架。
HunyuanVideo-I2V 是腾讯开源的图像到视频生成模型,基于 HunyuanVideo 架构开发。该模型通过图像潜在拼接技术,将参考图像信息有效整合到视频生成过程中,支持高分辨率视频生成,并提供可定制的 LoRA 效果训练功能。该技术在视频创作领域具有重要意义,能够帮助创作者快速生成高质量的视频内容,提升创作效率。
Wan2GP 是一个优化后的开源视频生成模型,专为低配置 GPU 用户设计,支持多种视频生成任务。
Wan2GP 是基于 Wan2.1 的改进版本,旨在为低配置 GPU 用户提供高效、低内存占用的视频生成解决方案。该模型通过优化内存管理和加速算法,使得普通用户也能在消费级 GPU 上快速生成高质量的视频内容。它支持多种任务,包括文本到视频、图像到视频、视频编辑等,同时具备强大的视频 VAE 架构,能够高效处理 1080P 视频。Wan2GP 的出现降低了视频生成技术的门槛,使得更多用户能够轻松上手并应用于实际场景。
SkyReels V1 是一个开源的人类中心视频基础模型,专注于高质量影视级视频生成。
SkyReels V1 是一个基于 HunyuanVideo 微调的人类中心视频生成模型。它通过高质量影视片段训练,能够生成具有电影级质感的视频内容。该模型在开源领域达到了行业领先水平,尤其在面部表情捕捉和场景理解方面表现出色。其主要优点包括开源领先性、先进的面部动画技术和电影级光影美学。该模型适用于需要高质量视频生成的场景,如影视制作、广告创作等,具有广泛的应用前景。
SkyReels-V1 是首个开源的人类中心视频基础模型,专注于高质量视频生成。
SkyReels-V1 是一个开源的人类中心视频基础模型,基于高质量影视片段微调,专注于生成高质量的视频内容。该模型在开源领域达到了顶尖水平,与商业模型相媲美。其主要优势包括:高质量的面部表情捕捉、电影级的光影效果以及高效的推理框架 SkyReelsInfer,支持多 GPU 并行处理。该模型适用于需要高质量视频生成的场景,如影视制作、广告创作等。
FlashVideo 是一个高效的高分辨率视频生成模型,专注于细节和保真度的流动。
FlashVideo 是一款专注于高效高分辨率视频生成的深度学习模型。它通过分阶段的生成策略,首先生成低分辨率视频,再通过增强模型提升至高分辨率,从而在保证细节的同时显著降低计算成本。该技术在视频生成领域具有重要意义,尤其是在需要高质量视觉内容的场景中。FlashVideo 适用于多种应用场景,包括内容创作、广告制作和视频编辑等。其开源性质使得研究人员和开发者可以灵活地进行定制和扩展。
Magic 1-For-1 是一个高效的图像到视频生成模型,可在一分钟内生成一分钟的视频。
Magic 1-For-1 是一个专注于高效视频生成的模型,其核心功能是将文本和图像快速转换为视频。该模型通过将文本到视频的生成任务分解为文本到图像和图像到视频两个子任务,优化了内存使用并减少了推理延迟。其主要优点包括高效性、低延迟和可扩展性。该模型由北京大学 DA-Group 团队开发,旨在推动交互式基础视频生成领域的发展。目前该模型及相关代码已开源,用户可以免费使用,但需遵守开源许可协议。
Lumina-Video 是一个用于视频生成的初步尝试项目,支持文本到视频的生成。
Lumina-Video 是 Alpha-VLLM 团队开发的一个视频生成模型,主要用于从文本生成高质量的视频内容。该模型基于深度学习技术,能够根据用户输入的文本提示生成对应的视频,具有高效性和灵活性。它在视频生成领域具有重要意义,为内容创作者提供了强大的工具,能够快速生成视频素材。目前该项目已开源,支持多种分辨率和帧率的视频生成,并提供了详细的安装和使用指南。
基于频率分解的身份保持文本到视频生成模型
ConsisID是一个基于频率分解的身份保持文本到视频生成模型,它通过在频域中使用身份控制信号来生成与输入文本描述一致的高保真度视频。该模型不需要针对不同案例进行繁琐的微调,并且能够保持生成视频中人物身份的一致性。ConsisID的提出,推动了视频生成技术的发展,特别是在无需调整的流程和频率感知的身份保持控制方案方面。
ComfyUI中集成的最新视频生成模型
Mochi是Genmo最新推出的开源视频生成模型,它在ComfyUI中经过优化,即使使用消费级GPU也能实现。Mochi以其高保真度动作和卓越的提示遵循性而著称,为ComfyUI社区带来了最先进的视频生成能力。Mochi模型在Apache 2.0许可下发布,这意味着开发者和创作者可以自由使用、修改和集成Mochi,而不受限制性许可的阻碍。Mochi能够在消费级GPU上运行,如4090,且在ComfyUI中支持多种注意力后端,使其能够适应小于24GB的VRAM。
开源视频生成模型
Mochi 1 是 Genmo 公司推出的一款研究预览版本的开源视频生成模型,它致力于解决当前AI视频领域的基本问题。该模型以其无与伦比的运动质量、卓越的提示遵循能力和跨越恐怖谷的能力而著称,能够生成连贯、流畅的人类动作和表情。Mochi 1 的开发背景是响应对高质量视频内容生成的需求,特别是在游戏、电影和娱乐行业中。产品目前提供免费试用,具体定价信息未在页面中提供。
先进的文本到视频生成模型
Allegro是由Rhymes AI开发的高级文本到视频模型,它能够将简单的文本提示转换成高质量的短视频片段。Allegro的开源特性使其成为创作者、开发者和AI视频生成领域研究人员的强大工具。Allegro的主要优点包括开源、内容创作多样化、高质量输出以及模型体积小且高效。它支持多种精度(FP32、BF16、FP16),在BF16模式下,GPU内存使用量为9.3 GB,上下文长度为79.2k,相当于88帧。Allegro的技术核心包括大规模视频数据处理、视频压缩成视觉令牌以及扩展视频扩散变换器。
创意智能平台,用于构建魔法般的AI产品
Dream Machine API是一个创意智能平台,它提供了一系列先进的视频生成模型,通过直观的API和开源SDKs,用户可以构建和扩展创意AI产品。该平台拥有文本到视频、图像到视频、关键帧控制、扩展、循环和相机控制等功能,旨在通过创意智能与人类合作,帮助他们创造更好的内容。Dream Machine API的推出,旨在推动视觉探索和创造的丰富性,让更多的想法得以尝试,构建更好的叙事,并让那些以前无法做到的人讲述多样化的故事。
开源的文本到视频生成模型
CogVideo是由清华大学团队开发的文本到视频生成模型,它通过深度学习技术将文本描述转换为视频内容。该技术在视频内容创作、教育、娱乐等领域具有广泛的应用前景。CogVideo模型通过大规模预训练,能够生成与文本描述相匹配的视频,为视频制作提供了一种全新的自动化方式。
生成视频的开源模型
CogVideoX是一个开源的视频生成模型,由清华大学团队开发,支持从文本描述生成视频。它提供了多种视频生成模型,包括入门级和大型模型,以满足不同质量和成本需求。模型支持多种精度,包括FP16和BF16,推荐使用与模型训练时相同的精度进行推理。CogVideoX-5B模型特别适用于需要生成高质量视频内容的场景,如电影制作、游戏开发和广告创意。
一个开源的视频生成模型,用于创造生动的视频内容。
CogVideoX-2B是一个开源的视频生成模型,由清华大学团队开发。它支持使用英语提示语言生成视频,具有36GB的推理GPU内存需求,并且可以生成6秒长、每秒8帧、分辨率为720*480的视频。该模型使用正弦位置嵌入,目前不支持量化推理和多卡推理。它基于Hugging Face的diffusers库进行部署,能够根据文本提示生成视频,具有高度的创造性和应用潜力。
文本到视频生成领域的先进模型架构
Open-Sora Plan v1.2是一个开源的视频生成模型,专注于文本到视频的转换任务。它采用3D全注意力架构,优化了视频的视觉表示,并提高了推理效率。该模型在视频生成领域具有创新性,能够更好地捕捉联合空间-时间特征,为视频内容的自动生成提供了新的技术路径。
文本到视频生成的创新框架
VideoTetris是一个新颖的框架,它实现了文本到视频的生成,特别适用于处理包含多个对象或对象数量动态变化的复杂视频生成场景。该框架通过空间时间组合扩散技术,精确地遵循复杂的文本语义,并通过操作和组合去噪网络的空间和时间注意力图来实现。此外,它还引入了一种新的参考帧注意力机制,以提高自回归视频生成的一致性。VideoTetris在组合文本到视频生成方面取得了令人印象深刻的定性和定量结果。
训练无关的运动克隆,实现可控视频生成
MotionClone是一个训练无关的框架,允许从参考视频进行运动克隆,以控制文本到视频的生成。它利用时间注意力机制在视频反转中表示参考视频中的运动,并引入了主时间注意力引导来减轻注意力权重中噪声或非常微妙运动的影响。此外,为了协助生成模型合成合理的空间关系并增强其提示跟随能力,提出了一种利用参考视频中的前景粗略位置和原始分类器自由引导特征的位置感知语义引导机制。
文本到视频生成的创新模型,实现姿势引导的动画制作。
Follow-Your-Pose是一个文本到视频生成的模型,它利用姿势信息和文本描述来生成可编辑、可控制姿势的角色视频。这项技术在数字人物创作领域具有重要应用价值,解决了缺乏综合数据集和视频生成先验模型的限制。通过两阶段训练方案,结合预训练的文本到图像模型,实现了姿势可控的视频生成。
文本到视频生成的开源模型,性能卓越。
Open-Sora-Plan是一个由北京大学元组团队开发的文本到视频生成模型。它在2024年4月首次推出v1.0.0版本,以其简单高效的设计和显著的性能在文本到视频生成领域获得了广泛认可。v1.1.0版本在视频生成质量和持续时间上进行了显著改进,包括更优的压缩视觉表示、更高的生成质量和更长的视频生成能力。该模型采用了优化的CausalVideoVAE架构,具有更强的性能和更高的推理效率。此外,它还保持了v1.0.0版本的极简设计和数据效率,并且与Sora基础模型的性能相似,表明其版本演进与Sora展示的扩展法则一致。
一款面向高质量长视频生成的实验性框架,具有扩展序列长度和增强动态特性。
Mira(Mini-Sora)是一个实验性的项目,旨在探索高质量、长时视频生成领域,特别是在模仿Sora风格的视频生成方面。它在现有文本到视频(T2V)生成框架的基础上,通过以下几个关键方面实现突破:扩展序列长度、增强动态特性以及保持3D一致性。目前,Mira项目处于实验阶段,与Sora等更高级的视频生成技术相比,仍有提升空间。
精准控制文本生成视频的相机姿态
CameraCtrl 致力于为文本生成视频模型提供精准相机姿态控制,通过训练相机编码器实现参数化相机轨迹,从而实现视频生成过程中的相机控制。产品通过综合研究各种数据集的效果,证明视频具有多样的相机分布和相似外观可以增强可控性和泛化能力。实验证明 CameraCtrl 在实现精确、领域自适应的相机控制方面非常有效,是从文本和相机姿态输入实现动态、定制视频叙事的重要进展。
文本和语音驱动的人体视频生成,从单张人物输入图像生成视频。
VLOGGER是一种从单张人物输入图像生成文本和音频驱动的讲话人类视频的方法,它建立在最近生成扩散模型的成功基础上。我们的方法包括1)一个随机的人类到3D运动扩散模型,以及2)一个新颖的基于扩散的架构,通过时间和空间控制增强文本到图像模型。这种方法能够生成长度可变的高质量视频,并且通过对人类面部和身体的高级表达方式轻松可控。与以前的工作不同,我们的方法不需要为每个人训练,也不依赖于人脸检测和裁剪,生成完整的图像(而不仅仅是面部或嘴唇),并考虑到正确合成交流人类所需的广泛场景(例如可见的躯干或多样性主体身份)。
© 2025 AIbase 备案号:闽ICP备08105208号-14