需求人群:
"目标受众为视频内容创作者、开发者和研究人员。视频创作者可以使用CogVideoX快速生成视频素材,节省制作成本;开发者可以基于开源代码进行定制开发,拓展视频生成的应用场景;研究人员可以通过模型微调和优化,探索视频生成技术的前沿。"
使用场景示例:
使用CogVideoX生成玩具船在地毯上航行的视频。
生成一辆白色复古SUV在山路上行驶的视频。
创作一幅街头艺术家在墙上喷涂彩色鸟的动画。
制作一个战争废墟背景下小女孩的感人视频。
产品特色:
支持文本到视频的转换,生成与描述相符的视频内容。
提供不同模型尺寸的版本,以适应不同计算资源的需求。
开源代码,允许开发者进行二次开发和模型优化。
提供详细的文档和示例代码,帮助用户快速上手。
支持模型微调,以适应特定领域的视频生成需求。
提供在线体验和API接口,方便用户进行视频生成。
使用教程:
1. 访问CogVideoX的GitHub页面,了解项目背景和基本信息。
2. 阅读文档,了解模型的安装和配置要求。
3. 下载或克隆代码库,获取模型和示例代码。
4. 根据文档指导,设置环境并安装必要的依赖。
5. 运行示例代码,体验文本到视频的生成过程。
6. 学习如何自定义文本提示,生成个性化的视频内容。
7. 探索模型微调和优化的方法,以适应特定的应用需求。
8. 利用提供的API接口或Web应用,进行更高级的视频生成操作。
浏览量:73
最新流量情况
月访问量
5.16m
平均访问时长
00:06:42
每次访问页数
5.81
跳出率
37.20%
流量来源
直接访问
52.27%
自然搜索
32.92%
邮件
0.05%
外链引荐
12.52%
社交媒体
2.15%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
11.99%
德国
3.63%
印度
9.20%
俄罗斯
5.25%
美国
19.02%
文本到视频的生成模型
CogVideoX是一个开源的视频生成模型,与商业模型同源,支持通过文本描述生成视频内容。它代表了文本到视频生成技术的最新进展,具有生成高质量视频的能力,能够广泛应用于娱乐、教育、商业宣传等领域。
开源视频生成模型,支持10秒视频和更高分辨率。
CogVideoX1.5-5B-SAT是由清华大学知识工程与数据挖掘团队开发的开源视频生成模型,是CogVideoX模型的升级版。该模型支持生成10秒视频,并支持更高分辨率的视频生成。模型包含Transformer、VAE和Text Encoder等模块,能够根据文本描述生成视频内容。CogVideoX1.5-5B-SAT模型以其强大的视频生成能力和高分辨率支持,为视频内容创作者提供了一个强大的工具,尤其在教育、娱乐和商业领域有着广泛的应用前景。
生成视频的开源模型
CogVideoX是一个开源的视频生成模型,由清华大学团队开发,支持从文本描述生成视频。它提供了多种视频生成模型,包括入门级和大型模型,以满足不同质量和成本需求。模型支持多种精度,包括FP16和BF16,推荐使用与模型训练时相同的精度进行推理。CogVideoX-5B模型特别适用于需要生成高质量视频内容的场景,如电影制作、游戏开发和广告创意。
文本到视频生成的创新框架
VideoTetris是一个新颖的框架,它实现了文本到视频的生成,特别适用于处理包含多个对象或对象数量动态变化的复杂视频生成场景。该框架通过空间时间组合扩散技术,精确地遵循复杂的文本语义,并通过操作和组合去噪网络的空间和时间注意力图来实现。此外,它还引入了一种新的参考帧注意力机制,以提高自回归视频生成的一致性。VideoTetris在组合文本到视频生成方面取得了令人印象深刻的定性和定量结果。
训练无关的运动克隆,实现可控视频生成
MotionClone是一个训练无关的框架,允许从参考视频进行运动克隆,以控制文本到视频的生成。它利用时间注意力机制在视频反转中表示参考视频中的运动,并引入了主时间注意力引导来减轻注意力权重中噪声或非常微妙运动的影响。此外,为了协助生成模型合成合理的空间关系并增强其提示跟随能力,提出了一种利用参考视频中的前景粗略位置和原始分类器自由引导特征的位置感知语义引导机制。
文本到视频生成的创新模型,实现姿势引导的动画制作。
Follow-Your-Pose是一个文本到视频生成的模型,它利用姿势信息和文本描述来生成可编辑、可控制姿势的角色视频。这项技术在数字人物创作领域具有重要应用价值,解决了缺乏综合数据集和视频生成先验模型的限制。通过两阶段训练方案,结合预训练的文本到图像模型,实现了姿势可控的视频生成。
一款面向高质量长视频生成的实验性框架,具有扩展序列长度和增强动态特性。
Mira(Mini-Sora)是一个实验性的项目,旨在探索高质量、长时视频生成领域,特别是在模仿Sora风格的视频生成方面。它在现有文本到视频(T2V)生成框架的基础上,通过以下几个关键方面实现突破:扩展序列长度、增强动态特性以及保持3D一致性。目前,Mira项目处于实验阶段,与Sora等更高级的视频生成技术相比,仍有提升空间。
Morph Studio可以帮助用户通过文本提示创造出独特的视频
Morph Studio是一个基于人工智能的文本到视频生成平台。它使用先进的算法,可以通过用户提供的文本提示,自动生成高质量的视频。Morph Studio使创作者可以将自己的创意快速实现成动态的视觉内容。它极大地降低了视频制作的门槛,用户无需具备专业技能和昂贵设备,就可以创造出独特的视频作品。此外,Morph Studio还提供了强大的自定义功能,用户可以调整生成视频的长度、分辨率、样式等参数,输出结果更符合自己的需求。总之,这是一款极具创新和颠覆性的人工智能产品。
视频扩散模型,用于虚拟试穿。
Fashion-VDM是一个视频扩散模型(VDM),用于生成虚拟试穿视频。该模型接受一件衣物图片和人物视频作为输入,旨在生成人物穿着给定衣物的高质量试穿视频,同时保留人物的身份和动作。与传统的基于图像的虚拟试穿相比,Fashion-VDM在衣物细节和时间一致性方面表现出色。该技术的主要优点包括:扩散式架构、分类器自由引导增强控制、单次64帧512px视频生成的渐进式时间训练策略,以及联合图像-视频训练的有效性。Fashion-VDM在视频虚拟试穿领域树立了新的行业标准。
ComfyUI中集成的最新视频生成模型
Mochi是Genmo最新推出的开源视频生成模型,它在ComfyUI中经过优化,即使使用消费级GPU也能实现。Mochi以其高保真度动作和卓越的提示遵循性而著称,为ComfyUI社区带来了最先进的视频生成能力。Mochi模型在Apache 2.0许可下发布,这意味着开发者和创作者可以自由使用、修改和集成Mochi,而不受限制性许可的阻碍。Mochi能够在消费级GPU上运行,如4090,且在ComfyUI中支持多种注意力后端,使其能够适应小于24GB的VRAM。
开源的全双工音频生成基础模型
hertz-dev是Standard Intelligence开源的全双工、仅音频的变换器基础模型,拥有85亿参数。该模型代表了可扩展的跨模态学习技术,能够将单声道16kHz语音转换为8Hz潜在表示,具有1kbps的比特率,性能优于其他音频编码器。hertz-dev的主要优点包括低延迟、高效率和易于研究人员进行微调和构建。产品背景信息显示,Standard Intelligence致力于构建对全人类有益的通用智能,而hertz-dev是这一旅程的第一步。
开源视频生成模型
genmoai/models 是一个开源的视频生成模型,代表了视频生成技术的最新进展。该模型名为 Mochi 1,是一个基于 Asymmetric Diffusion Transformer (AsymmDiT) 架构的10亿参数扩散模型,从零开始训练,是迄今为止公开发布的最大的视频生成模型。它具有高保真运动和强提示遵循性,显著缩小了封闭和开放视频生成系统之间的差距。该模型在 Apache 2.0 许可下发布,用户可以在 Genmo 的 playground 上免费试用此模型。
开源视频生成模型
Mochi 1 是 Genmo 公司推出的一款研究预览版本的开源视频生成模型,它致力于解决当前AI视频领域的基本问题。该模型以其无与伦比的运动质量、卓越的提示遵循能力和跨越恐怖谷的能力而著称,能够生成连贯、流畅的人类动作和表情。Mochi 1 的开发背景是响应对高质量视频内容生成的需求,特别是在游戏、电影和娱乐行业中。产品目前提供免费试用,具体定价信息未在页面中提供。
先进的文本到视频生成模型
Allegro是由Rhymes AI开发的高级文本到视频模型,它能够将简单的文本提示转换成高质量的短视频片段。Allegro的开源特性使其成为创作者、开发者和AI视频生成领域研究人员的强大工具。Allegro的主要优点包括开源、内容创作多样化、高质量输出以及模型体积小且高效。它支持多种精度(FP32、BF16、FP16),在BF16模式下,GPU内存使用量为9.3 GB,上下文长度为79.2k,相当于88帧。Allegro的技术核心包括大规模视频数据处理、视频压缩成视觉令牌以及扩展视频扩散变换器。
视频生成评估基准测试
Movie Gen Bench是由Facebook Research发布的视频生成评估基准测试,旨在为未来在视频生成领域的研究提供公平且易于比较的标准。该基准测试包括Movie Gen Video Bench和Movie Gen Audio Bench两个部分,分别针对视频内容生成和音频生成进行评估。Movie Gen Bench的发布,对于推动视频生成技术的发展和评估具有重要意义,它能够帮助研究人员和开发者更好地理解和改进视频生成模型的性能。
重新定义视频创作
Hailuo AI Video Generator 是一款利用人工智能技术,根据文本提示自动生成视频内容的工具。它通过深度学习算法,将用户的文字描述转化为视觉图像,极大地简化了视频制作流程,提高了创作效率。该产品适用于需要快速生成视频内容的个人和企业,特别是在广告、社交媒体内容制作和电影预览等领域。
数字人模型,支持生成普通话视频
JoyHallo是一个数字人模型,专为普通话视频生成而设计。它通过收集来自京东健康国际有限公司员工的29小时普通话视频,创建了jdh-Hallo数据集。该数据集覆盖了不同年龄和说话风格,包括对话和专业医疗话题。JoyHallo模型采用中国wav2vec2模型进行音频特征嵌入,并提出了一种半解耦结构来捕捉唇部、表情和姿态特征之间的相互关系,提高了信息利用效率,并加快了推理速度14.3%。此外,JoyHallo在生成英语视频方面也表现出色,展现了卓越的跨语言生成能力。
开源大型语言模型,支持多语言和专业领域应用。
Qwen2.5是一系列基于Qwen2语言模型构建的新型语言模型,包括通用语言模型Qwen2.5,以及专门针对编程的Qwen2.5-Coder和数学的Qwen2.5-Math。这些模型在大规模数据集上进行了预训练,具备强大的知识理解能力和多语言支持,适用于各种复杂的自然语言处理任务。它们的主要优点包括更高的知识密度、增强的编程和数学能力、以及对长文本和结构化数据的更好理解。Qwen2.5的发布是开源社区的一大进步,为开发者和研究人员提供了强大的工具,以推动人工智能领域的研究和发展。
谷歌旗下领先的人工智能研究公司
Google DeepMind 是谷歌旗下的一家领先的人工智能公司,专注于开发先进的机器学习算法和系统。DeepMind 以其在深度学习和强化学习领域的开创性工作而闻名,其研究涵盖了从游戏到医疗保健等多个领域。DeepMind 的目标是通过构建智能系统来解决复杂的问题,推动科学和医学的进步。
使用开源模型Llama-3.1 70b在Groq上创建类似o1的推理链
g1是一个实验性的项目,旨在通过使用Llama-3.1 70b模型在Groq硬件上创建类似于OpenAI的o1模型的推理链。这个项目展示了仅通过提示技术,就可以显著提高现有开源模型在逻辑问题解决上的能力,而无需进行复杂的训练。g1通过可视化的推理步骤,帮助模型在逻辑问题上实现更准确的推理,这对于提高人工智能的逻辑推理能力具有重要意义。
创意智能平台,用于构建魔法般的AI产品
Dream Machine API是一个创意智能平台,它提供了一系列先进的视频生成模型,通过直观的API和开源SDKs,用户可以构建和扩展创意AI产品。该平台拥有文本到视频、图像到视频、关键帧控制、扩展、循环和相机控制等功能,旨在通过创意智能与人类合作,帮助他们创造更好的内容。Dream Machine API的推出,旨在推动视觉探索和创造的丰富性,让更多的想法得以尝试,构建更好的叙事,并让那些以前无法做到的人讲述多样化的故事。
从长视频中生成引人入胜的YouTube短片
AI Youtube Shorts Generator 是一个利用GPT-4和Whisper技术的Python工具,它可以从长视频中提取最有趣的亮点,检测演讲者,并将内容垂直裁剪,以适应短片格式。这个工具目前处于0.1版本,可能存在一些bug。
开源的文本到视频生成模型
CogVideo是由清华大学团队开发的文本到视频生成模型,它通过深度学习技术将文本描述转换为视频内容。该技术在视频内容创作、教育、娱乐等领域具有广泛的应用前景。CogVideo模型通过大规模预训练,能够生成与文本描述相匹配的视频,为视频制作提供了一种全新的自动化方式。
一个开源的视频生成模型,用于创造生动的视频内容。
CogVideoX-2B是一个开源的视频生成模型,由清华大学团队开发。它支持使用英语提示语言生成视频,具有36GB的推理GPU内存需求,并且可以生成6秒长、每秒8帧、分辨率为720*480的视频。该模型使用正弦位置嵌入,目前不支持量化推理和多卡推理。它基于Hugging Face的diffusers库进行部署,能够根据文本提示生成视频,具有高度的创造性和应用潜力。
文本到视频生成领域的先进模型架构
Open-Sora Plan v1.2是一个开源的视频生成模型,专注于文本到视频的转换任务。它采用3D全注意力架构,优化了视频的视觉表示,并提高了推理效率。该模型在视频生成领域具有创新性,能够更好地捕捉联合空间-时间特征,为视频内容的自动生成提供了新的技术路径。
可控视频和图像生成技术
ControlNeXt是一个开源的图像和视频生成模型,它通过减少高达90%的可训练参数,实现了更快的收敛速度和卓越的效率。该项目支持多种控制信息形式,并且可以与LoRA技术结合使用,以改变风格并确保更稳定的生成效果。
高质量人体动作视频生成
MimicMotion是由腾讯公司和上海交通大学联合研发的高质量人体动作视频生成模型。该模型通过信心感知的姿态引导,实现了对视频生成过程的可控性,提高了视频的时序平滑性,并减少了图像失真。它采用了先进的图像到视频的扩散模型,结合了时空U-Net和PoseNet,能够根据姿势序列条件生成任意长度的高质量视频。MimicMotion在多个方面显著优于先前的方法,包括手部生成质量、对参考姿势的准确遵循等。
© 2024 AIbase 备案号:闽ICP备08105208号-14