需求人群:
"CogVideo适合视频内容创作者、媒体公司、教育机构以及任何需要自动化视频生成技术的个人或组织。它通过自动化的方式减少了视频制作的时间和成本,同时为创意表达提供了新的可能性。"
使用场景示例:
视频博主使用CogVideo将脚本自动转换为视频,提高内容发布的效率。
教育机构利用CogVideo生成教学视频,辅助教学过程。
电影制作团队使用CogVideo进行初步的视频概念验证,加快创意实现过程。
产品特色:
支持文本到视频的自动生成,将文本描述直接转换为视频内容。
提供多种模型版本,包括CogVideoX-2B和CogVideoX-5B,以适应不同的性能需求。
模型优化,能够在较低的GPU资源消耗下运行,使得在普通硬件上也能进行视频生成。
支持视频质量增强,通过VEnhancer技术提高视频的分辨率和质量。
提供详细的文档和示例代码,帮助用户快速上手和进行二次开发。
支持多语言输入,尽管主要使用英语,但可以通过翻译模型进行其他语言的文本输入。
模型开源,允许社区贡献和进一步的研究开发。
使用教程:
访问CogVideo的GitHub页面,了解模型的基本信息和安装要求。
根据指导文档安装必要的软件依赖,如Python环境和深度学习库。
下载并配置CogVideo模型,可以选择适合自己硬件的模型版本。
准备文本输入,确保文本描述与所需视频内容相匹配。
运行模型,输入文本描述,模型将自动生成视频。
根据需要,使用VEnhancer等工具对生成的视频进行质量增强。
分享或进一步编辑生成的视频,以满足特定的使用需求。
浏览量:26
最新流量情况
月访问量
5.00m
平均访问时长
00:06:52
每次访问页数
5.82
跳出率
37.31%
流量来源
直接访问
52.65%
自然搜索
32.08%
邮件
0.05%
外链引荐
12.79%
社交媒体
2.25%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.49%
德国
3.62%
印度
9.70%
俄罗斯
3.96%
美国
18.50%
开源的文本到视频生成模型
CogVideo是由清华大学团队开发的文本到视频生成模型,它通过深度学习技术将文本描述转换为视频内容。该技术在视频内容创作、教育、娱乐等领域具有广泛的应用前景。CogVideo模型通过大规模预训练,能够生成与文本描述相匹配的视频,为视频制作提供了一种全新的自动化方式。
生成视频的开源模型
CogVideoX是一个开源的视频生成模型,由清华大学团队开发,支持从文本描述生成视频。它提供了多种视频生成模型,包括入门级和大型模型,以满足不同质量和成本需求。模型支持多种精度,包括FP16和BF16,推荐使用与模型训练时相同的精度进行推理。CogVideoX-5B模型特别适用于需要生成高质量视频内容的场景,如电影制作、游戏开发和广告创意。
文本到视频的生成模型
CogVideoX是一个开源的视频生成模型,与商业模型同源,支持通过文本描述生成视频内容。它代表了文本到视频生成技术的最新进展,具有生成高质量视频的能力,能够广泛应用于娱乐、教育、商业宣传等领域。
文本到视频生成领域的先进模型架构
Open-Sora Plan v1.2是一个开源的视频生成模型,专注于文本到视频的转换任务。它采用3D全注意力架构,优化了视频的视觉表示,并提高了推理效率。该模型在视频生成领域具有创新性,能够更好地捕捉联合空间-时间特征,为视频内容的自动生成提供了新的技术路径。
革命性深度学习工具,用于面部转换和视频生成。
DeepFuze是与ComfyUI无缝集成的先进深度学习工具,用于革新面部转换、lipsyncing、视频生成、声音克隆和lipsync翻译。利用先进的算法,DeepFuze使用户能够以无与伦比的真实性结合音频和视频,确保完美的面部动作同步。这一创新解决方案非常适合内容创作者、动画师、开发者以及任何希望以先进的AI驱动功能提升其视频编辑项目的人士。
文本到视频生成的创新框架
VideoTetris是一个新颖的框架,它实现了文本到视频的生成,特别适用于处理包含多个对象或对象数量动态变化的复杂视频生成场景。该框架通过空间时间组合扩散技术,精确地遵循复杂的文本语义,并通过操作和组合去噪网络的空间和时间注意力图来实现。此外,它还引入了一种新的参考帧注意力机制,以提高自回归视频生成的一致性。VideoTetris在组合文本到视频生成方面取得了令人印象深刻的定性和定量结果。
训练无关的运动克隆,实现可控视频生成
MotionClone是一个训练无关的框架,允许从参考视频进行运动克隆,以控制文本到视频的生成。它利用时间注意力机制在视频反转中表示参考视频中的运动,并引入了主时间注意力引导来减轻注意力权重中噪声或非常微妙运动的影响。此外,为了协助生成模型合成合理的空间关系并增强其提示跟随能力,提出了一种利用参考视频中的前景粗略位置和原始分类器自由引导特征的位置感知语义引导机制。
文本到视频生成的创新模型,实现姿势引导的动画制作。
Follow-Your-Pose是一个文本到视频生成的模型,它利用姿势信息和文本描述来生成可编辑、可控制姿势的角色视频。这项技术在数字人物创作领域具有重要应用价值,解决了缺乏综合数据集和视频生成先验模型的限制。通过两阶段训练方案,结合预训练的文本到图像模型,实现了姿势可控的视频生成。
由Novita AI提供的非官方Animate Anyone实现
AnimateAnyone是一个基于深度学习的视频生成模型,它能够将静态图片或视频转换为动画。该模型由Novita AI非官方实现,灵感来源于MooreThreads/Moore-AnimateAnyone的实现,并在训练过程和数据集上进行了调整。
文本到视频生成的开源模型,性能卓越。
Open-Sora-Plan是一个由北京大学元组团队开发的文本到视频生成模型。它在2024年4月首次推出v1.0.0版本,以其简单高效的设计和显著的性能在文本到视频生成领域获得了广泛认可。v1.1.0版本在视频生成质量和持续时间上进行了显著改进,包括更优的压缩视觉表示、更高的生成质量和更长的视频生成能力。该模型采用了优化的CausalVideoVAE架构,具有更强的性能和更高的推理效率。此外,它还保持了v1.0.0版本的极简设计和数据效率,并且与Sora基础模型的性能相似,表明其版本演进与Sora展示的扩展法则一致。
一款面向高质量长视频生成的实验性框架,具有扩展序列长度和增强动态特性。
Mira(Mini-Sora)是一个实验性的项目,旨在探索高质量、长时视频生成领域,特别是在模仿Sora风格的视频生成方面。它在现有文本到视频(T2V)生成框架的基础上,通过以下几个关键方面实现突破:扩展序列长度、增强动态特性以及保持3D一致性。目前,Mira项目处于实验阶段,与Sora等更高级的视频生成技术相比,仍有提升空间。
AI学习平台
Generative AI Courses是一家提供AI学习课程的在线平台。通过课程学习,用户可以掌握GenAI、AI、机器学习、深度学习、chatGPT、DALLE、图像生成、视频生成、文本生成等技术,并了解2024年AI领域的最新发展。
精准控制文本生成视频的相机姿态
CameraCtrl 致力于为文本生成视频模型提供精准相机姿态控制,通过训练相机编码器实现参数化相机轨迹,从而实现视频生成过程中的相机控制。产品通过综合研究各种数据集的效果,证明视频具有多样的相机分布和相似外观可以增强可控性和泛化能力。实验证明 CameraCtrl 在实现精确、领域自适应的相机控制方面非常有效,是从文本和相机姿态输入实现动态、定制视频叙事的重要进展。
文本和语音驱动的人体视频生成,从单张人物输入图像生成视频。
VLOGGER是一种从单张人物输入图像生成文本和音频驱动的讲话人类视频的方法,它建立在最近生成扩散模型的成功基础上。我们的方法包括1)一个随机的人类到3D运动扩散模型,以及2)一个新颖的基于扩散的架构,通过时间和空间控制增强文本到图像模型。这种方法能够生成长度可变的高质量视频,并且通过对人类面部和身体的高级表达方式轻松可控。与以前的工作不同,我们的方法不需要为每个人训练,也不依赖于人脸检测和裁剪,生成完整的图像(而不仅仅是面部或嘴唇),并考虑到正确合成交流人类所需的广泛场景(例如可见的躯干或多样性主体身份)。
Etna是七火山科技开发的AIGC模型,专注于根据文本描述生成相应的视频内容
Etna模型采用了Diffusion架构,并结合了时空卷积和注意力层,使其能够处理视频数据并理解时间连续性,从而生成具有时间维度的视频内容。该模型在大型视频数据集上进行训练,使用了深度学习技术策略,包括大规模训练、超参数优化和微调,以确保强大的性能和生成能力。
Morph Studio可以帮助用户通过文本提示创造出独特的视频
Morph Studio是一个基于人工智能的文本到视频生成平台。它使用先进的算法,可以通过用户提供的文本提示,自动生成高质量的视频。Morph Studio使创作者可以将自己的创意快速实现成动态的视觉内容。它极大地降低了视频制作的门槛,用户无需具备专业技能和昂贵设备,就可以创造出独特的视频作品。此外,Morph Studio还提供了强大的自定义功能,用户可以调整生成视频的长度、分辨率、样式等参数,输出结果更符合自己的需求。总之,这是一款极具创新和颠覆性的人工智能产品。
Sora AI 开发的纯文本到视频生成模型
Sora 是 OpenAI 开发的文本到视频生成模型,能够根据文本描述生成长达1分钟的逼真图像序列。它具有理解和模拟物理世界运动的能力,目标是训练出帮助人们解决需要实物交互的问题的模型。Sora 可以解释长篇提示,根据文本输入生成各种人物、动物、景观和城市景象。它的缺点是难以准确描绘复杂场景的物理学以及理解因果关系。
AI革命性地改变了内容创作,利用先进的视频生成技术,将文本和图像转化为动态视频,实现视频到视频的创作。探索数字故事讲述的未来。
AI SORA TECH是一款革命性的内容创作工具,利用先进的视频生成技术,将文本和图像转化为动态视频,并支持视频到视频的创作。它可以根据输入的文本或图像生成整个视频或延长现有视频的长度,满足各种视频制作需求。AI SORA TECH的功能丰富,操作简便,适用于专业人士和初学者。
这是一个使用深度学习为文字描述生成动画视频的模型
AnimateLCM是一个使用深度学习生成动画视频的模型。它可以仅使用极少的采样步骤就生成高保真的动画视频。与直接在原始视频数据集上进行一致性学习不同,AnimateLCM采用了解耦的一致性学习策略,将图像生成先验知识和运动生成先验知识的萃取进行解耦,从而提高了训练效率并增强了生成的视觉质量。此外,AnimateLCM还可以与Stable Diffusion社区的插件模块配合使用,实现各种可控生成功能。AnimateLCM已经在基于图像的视频生成和基于布局的视频生成中验证了其性能。
视频生成AI模型,能够根据文本描述生成高质量视频
VideoCrafter2是一个视频生成AI模型,能够根据文本描述生成高质量、流畅的视频。它通过克服数据局限,实现了高质量视频生成的目标。该模型可以生成照片级质量的视频,支持精细的运动控制和概念组合。用户只需要提供文本描述,VideoCrafter2就可以自动生成剧本级别的视频作品,可用于视频创作、动画制作等领域。
更好的文本到视频生成评价工具
该产品是一种用于评价文本到视频生成质量的工具。它引入了一种新的评价指标,即文本到视频评分(T2VScore)。该评分整合了两个关键标准:(1)文本-视频对齐,用于审查视频在呈现给定文本描述方面的忠实度;(2)视频质量,评估视频的整体制作水平。此外,为了评估提出的指标并促进未来对其的改进,该产品提供了TVGE数据集,收集了对2,543个文本到视频生成视频在这两个标准上的人类判断。对TVGE数据集的实验表明,提出的T2VScore在为文本到视频生成提供更好的评价指标方面表现出优越性。
多阶段高美感视频生成
MagicVideo-V2是一个集成了文本到图像模型、视频运动生成器、参考图像嵌入模块和帧插值模块的端到端视频生成管道。其架构设计使得MagicVideo-V2能够生成外观美观、高分辨率的视频,具有出色的保真度和平滑性。通过大规模用户评估,它展现出比Runway、Pika 1.0、Morph、Moon Valley和Stable Video Diffusion等领先的文本到视频系统更优越的性能。
为文本到视频扩散模型添加稀疏控制
SparseCtrl是为了增强对文本到视频生成的控制性而开发的,它能够灵活地结合稀疏信号进行结构控制,只需一个或少量输入。它包括一个额外的条件编码器来处理这些稀疏信号,同时不影响预训练的文本到视频模型。该方法兼容各种形式,包括素描、深度和RGB图像,为视频生成提供更实用的控制,并推动故事板、深度渲染、关键帧动画和插值等应用。大量实验证明了SparseCtrl在原始和个性化文本到视频生成器上的泛化能力。
Show-1 将像素和潜在扩散模型结合起来,以实现高效的高质量文本到视频的生成
Show-1是一种高效的文本到视频生成模型,它结合了像素级和潜变量级的扩散模型,既能生成与文本高度相关的视频,也能以较低的计算资源要求生成高质量的视频。它首先用像素级模型生成低分辨率的初步视频,然后使用潜变量模型将其上采样到高分辨率,从而结合两种模型的优势。相比纯潜变量模型,Show-1生成的视频文本关联更准确;相比纯像素模型,它的运算成本也更低。
由上海人工智能实验室开发的先进视频生成模型
Vchitect 2.0(筑梦2.0)是一款由上海人工智能实验室开发的高级视频生成模型,旨在赋予视频创作新的动力。它支持20秒视频生成,灵活的宽高比,生成空间时间增强,以及长视频评估。Vchitect 2.0通过其先进的技术,能够将静态图像转换为5-10秒的视频,使用户能够轻松地将照片或设计转换为引人入胜的视觉体验。此外,Vchitect 2.0还支持长视频生成模型的评估,通过VBench平台,提供全面且持续更新的评估排行榜,支持多种长视频模型,如Gen-3、Kling、OpenSora等。
轻量级端到端文本到语音模型
OptiSpeech是一个高效、轻量级且快速的文本到语音模型,专为设备端文本到语音转换设计。它利用了先进的深度学习技术,能够将文本转换为自然听起来的语音,适合需要在移动设备或嵌入式系统中实现语音合成的应用。OptiSpeech的开发得到了Pneuma Solutions提供的GPU资源支持,显著加速了开发进程。
NVIDIA深度学习教学套件,助力教育者融入GPU课程。
NVIDIA DLI Teaching Kits是由NVIDIA深度学习研究所(DLI)提供的一套教学资源,旨在帮助大学教育者将GPU技术融入到他们的课程中。这些教学套件与领先的大学教师共同开发,提供完整的课程设计和易于使用的资源,使教育者能够将学术理论与现实世界的应用相结合,培养下一代创新者的关键计算技能。大多数教学套件现在也作为现成的Canvas LMS课程提供。
© 2024 AIbase 备案号:闽ICP备08105208号-14