需求人群:
"目标受众为视频内容创作者、特效师、游戏开发者、研究人员和任何需要生成视频内容的专业人士。Allegro-TI2V因其强大的视频生成能力和高效的模型设计,特别适合需要快速生成高质量视频内容的用户,无论是用于娱乐、教育还是商业目的。"
使用场景示例:
案例一:使用Allegro-TI2V根据文本提示和一张图片生成一段关于汽车行驶的视频。
案例二:利用Allegro-TI2V创作一段关于动物在森林中奔跑的动画视频。
案例三:结合Allegro-TI2V和EMA-VFI技术,将15FPS的视频内容插值到30FPS,以提高视频流畅度。
产品特色:
- 开源:模型权重和代码完全开放给社区,遵循Apache 2.0协议。
- 多样化内容创作:能够生成从人物和动物特写到多样化动态场景的广泛内容。
- 文本图像到视频生成:支持从用户提供的提示和图像生成视频,包括基于第一帧图像和提示生成后续视频内容,以及基于第一帧和最后一帧图像生成中间视频内容。
- 高质量输出:能够生成720x1280分辨率、15FPS的6秒详细视频,可通过EMA-VFI插值到30FPS。
- 小巧高效:包含175M参数的VideoVAE和2.8B参数的VideoDiT模型,支持多种精度(FP32, BF16, FP16),在BF16模式下使用CPU offloading时GPU内存占用为9.3GB。
- 多精度支持:模型支持FP32, BF16, FP16等多种精度,以适应不同的硬件和性能需求。
- 快速推理:在单GPU上推理时间为20分钟(H100),或在8xH100上为3分钟。
使用教程:
1. 从GitHub下载Allegro的代码。
2. 安装必要的依赖,确保Python版本大于等于3.10,PyTorch版本大于等于2.4,CUDA版本大于等于12.4。
3. 从Hugging Face下载Allegro-TI2V模型权重。
4. 使用提供的命令行工具运行推理,输入必要的参数,如用户提示、第一帧图像路径等。
5. 如果需要,使用EMA-VFI将生成的视频从15FPS插值到30FPS以提高视频质量。
6. 使用imageio等工具保存生成的视频。
浏览量:20
最新流量情况
月访问量
19075.32k
平均访问时长
00:05:32
每次访问页数
5.52
跳出率
45.07%
流量来源
直接访问
48.31%
自然搜索
36.36%
邮件
0.03%
外链引荐
12.17%
社交媒体
3.11%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.13%
印度
7.59%
日本
3.67%
俄罗斯
6.13%
美国
18.18%
文本图像到视频生成模型
Allegro-TI2V是一个文本图像到视频生成模型,它能够根据用户提供的提示和图像生成视频内容。该模型以其开源性、多样化的内容创作能力、高质量的输出、小巧高效的模型参数以及支持多种精度和GPU内存优化而受到关注。它代表了当前人工智能技术在视频生成领域的前沿进展,具有重要的技术价值和商业应用潜力。Allegro-TI2V模型在Hugging Face平台上提供,遵循Apache 2.0开源协议,用户可以免费下载和使用。
文本到视频的生成模型
CogVideoX是一个开源的视频生成模型,与商业模型同源,支持通过文本描述生成视频内容。它代表了文本到视频生成技术的最新进展,具有生成高质量视频的能力,能够广泛应用于娱乐、教育、商业宣传等领域。
开源视频生成模型,支持10秒视频和更高分辨率。
CogVideoX1.5-5B-SAT是由清华大学知识工程与数据挖掘团队开发的开源视频生成模型,是CogVideoX模型的升级版。该模型支持生成10秒视频,并支持更高分辨率的视频生成。模型包含Transformer、VAE和Text Encoder等模块,能够根据文本描述生成视频内容。CogVideoX1.5-5B-SAT模型以其强大的视频生成能力和高分辨率支持,为视频内容创作者提供了一个强大的工具,尤其在教育、娱乐和商业领域有着广泛的应用前景。
创意智能平台,用于构建魔法般的AI产品
Dream Machine API是一个创意智能平台,它提供了一系列先进的视频生成模型,通过直观的API和开源SDKs,用户可以构建和扩展创意AI产品。该平台拥有文本到视频、图像到视频、关键帧控制、扩展、循环和相机控制等功能,旨在通过创意智能与人类合作,帮助他们创造更好的内容。Dream Machine API的推出,旨在推动视觉探索和创造的丰富性,让更多的想法得以尝试,构建更好的叙事,并让那些以前无法做到的人讲述多样化的故事。
从长视频中生成引人入胜的YouTube短片
AI Youtube Shorts Generator 是一个利用GPT-4和Whisper技术的Python工具,它可以从长视频中提取最有趣的亮点,检测演讲者,并将内容垂直裁剪,以适应短片格式。这个工具目前处于0.1版本,可能存在一些bug。
生成视频的开源模型
CogVideoX是一个开源的视频生成模型,由清华大学团队开发,支持从文本描述生成视频。它提供了多种视频生成模型,包括入门级和大型模型,以满足不同质量和成本需求。模型支持多种精度,包括FP16和BF16,推荐使用与模型训练时相同的精度进行推理。CogVideoX-5B模型特别适用于需要生成高质量视频内容的场景,如电影制作、游戏开发和广告创意。
文本到视频生成的创新框架
VideoTetris是一个新颖的框架,它实现了文本到视频的生成,特别适用于处理包含多个对象或对象数量动态变化的复杂视频生成场景。该框架通过空间时间组合扩散技术,精确地遵循复杂的文本语义,并通过操作和组合去噪网络的空间和时间注意力图来实现。此外,它还引入了一种新的参考帧注意力机制,以提高自回归视频生成的一致性。VideoTetris在组合文本到视频生成方面取得了令人印象深刻的定性和定量结果。
训练无关的运动克隆,实现可控视频生成
MotionClone是一个训练无关的框架,允许从参考视频进行运动克隆,以控制文本到视频的生成。它利用时间注意力机制在视频反转中表示参考视频中的运动,并引入了主时间注意力引导来减轻注意力权重中噪声或非常微妙运动的影响。此外,为了协助生成模型合成合理的空间关系并增强其提示跟随能力,提出了一种利用参考视频中的前景粗略位置和原始分类器自由引导特征的位置感知语义引导机制。
文本到视频生成的创新模型,实现姿势引导的动画制作。
Follow-Your-Pose是一个文本到视频生成的模型,它利用姿势信息和文本描述来生成可编辑、可控制姿势的角色视频。这项技术在数字人物创作领域具有重要应用价值,解决了缺乏综合数据集和视频生成先验模型的限制。通过两阶段训练方案,结合预训练的文本到图像模型,实现了姿势可控的视频生成。
一款面向高质量长视频生成的实验性框架,具有扩展序列长度和增强动态特性。
Mira(Mini-Sora)是一个实验性的项目,旨在探索高质量、长时视频生成领域,特别是在模仿Sora风格的视频生成方面。它在现有文本到视频(T2V)生成框架的基础上,通过以下几个关键方面实现突破:扩展序列长度、增强动态特性以及保持3D一致性。目前,Mira项目处于实验阶段,与Sora等更高级的视频生成技术相比,仍有提升空间。
Morph Studio可以帮助用户通过文本提示创造出独特的视频
Morph Studio是一个基于人工智能的文本到视频生成平台。它使用先进的算法,可以通过用户提供的文本提示,自动生成高质量的视频。Morph Studio使创作者可以将自己的创意快速实现成动态的视觉内容。它极大地降低了视频制作的门槛,用户无需具备专业技能和昂贵设备,就可以创造出独特的视频作品。此外,Morph Studio还提供了强大的自定义功能,用户可以调整生成视频的长度、分辨率、样式等参数,输出结果更符合自己的需求。总之,这是一款极具创新和颠覆性的人工智能产品。
AI革命性地改变了内容创作,利用先进的视频生成技术,将文本和图像转化为动态视频,实现视频到视频的创作。探索数字故事讲述的未来。
AI SORA TECH是一款革命性的内容创作工具,利用先进的视频生成技术,将文本和图像转化为动态视频,并支持视频到视频的创作。它可以根据输入的文本或图像生成整个视频或延长现有视频的长度,满足各种视频制作需求。AI SORA TECH的功能丰富,操作简便,适用于专业人士和初学者。
腾讯开源的大型视频生成模型训练框架
HunyuanVideo是腾讯开源的一个系统性框架,用于训练大型视频生成模型。该框架通过采用数据策划、图像-视频联合模型训练和高效的基础设施等关键技术,成功训练了一个超过130亿参数的视频生成模型,是所有开源模型中最大的。HunyuanVideo在视觉质量、运动多样性、文本-视频对齐和生成稳定性方面表现出色,超越了包括Runway Gen-3、Luma 1.6在内的多个行业领先模型。通过开源代码和模型权重,HunyuanVideo旨在缩小闭源和开源视频生成模型之间的差距,推动视频生成生态系统的活跃发展。
基于频率分解的身份保持文本到视频生成模型
ConsisID是一个基于频率分解的身份保持文本到视频生成模型,它通过在频域中使用身份控制信号来生成与输入文本描述一致的高保真度视频。该模型不需要针对不同案例进行繁琐的微调,并且能够保持生成视频中人物身份的一致性。ConsisID的提出,推动了视频生成技术的发展,特别是在无需调整的流程和频率感知的身份保持控制方案方面。
视频生成模型Sora的存档库
SoraVids是一个基于Hugging Face平台的视频生成模型Sora的存档库。它包含了87个视频和83个对应的提示,这些视频和提示在OpenAI撤销API密钥前被公开展示。这些视频均为MIME类型video/mp4,帧率为30 FPS。SoraVids的背景是OpenAI的视频生成技术,它允许用户通过文本提示生成视频内容。这个存档库的重要性在于它保存了在API密钥被撤销前生成的视频,为研究和教育提供了宝贵的资源。
基于DiT的视频生成模型,实时生成高质量视频。
LTX-Video是由Lightricks开发的首个基于DiT的视频生成模型,能够实时生成高质量的视频内容。该模型以24 FPS的速度生成768x512分辨率的视频,速度超过观看速度。模型经过大规模多样化视频数据集的训练,能够生成高分辨率且内容真实多样的视频。LTX-Video支持文本到视频(text-to-video)以及图像+文本到视频(image+text-to-video)的应用场景。
高效率自回归视频生成模型
Pyramid Flow miniFLUX是一个基于流匹配的自回归视频生成方法,专注于训练效率和开源数据集的使用。该模型能够生成高质量的10秒768p分辨率、24帧每秒的视频,并自然支持图像到视频的生成。它是视频内容创作和研究领域的一个重要工具,尤其在需要生成连贯动态图像的场合。
视频扩散模型,用于虚拟试穿。
Fashion-VDM是一个视频扩散模型(VDM),用于生成虚拟试穿视频。该模型接受一件衣物图片和人物视频作为输入,旨在生成人物穿着给定衣物的高质量试穿视频,同时保留人物的身份和动作。与传统的基于图像的虚拟试穿相比,Fashion-VDM在衣物细节和时间一致性方面表现出色。该技术的主要优点包括:扩散式架构、分类器自由引导增强控制、单次64帧512px视频生成的渐进式时间训练策略,以及联合图像-视频训练的有效性。Fashion-VDM在视频虚拟试穿领域树立了新的行业标准。
ComfyUI中集成的最新视频生成模型
Mochi是Genmo最新推出的开源视频生成模型,它在ComfyUI中经过优化,即使使用消费级GPU也能实现。Mochi以其高保真度动作和卓越的提示遵循性而著称,为ComfyUI社区带来了最先进的视频生成能力。Mochi模型在Apache 2.0许可下发布,这意味着开发者和创作者可以自由使用、修改和集成Mochi,而不受限制性许可的阻碍。Mochi能够在消费级GPU上运行,如4090,且在ComfyUI中支持多种注意力后端,使其能够适应小于24GB的VRAM。
开源的全双工音频生成基础模型
hertz-dev是Standard Intelligence开源的全双工、仅音频的变换器基础模型,拥有85亿参数。该模型代表了可扩展的跨模态学习技术,能够将单声道16kHz语音转换为8Hz潜在表示,具有1kbps的比特率,性能优于其他音频编码器。hertz-dev的主要优点包括低延迟、高效率和易于研究人员进行微调和构建。产品背景信息显示,Standard Intelligence致力于构建对全人类有益的通用智能,而hertz-dev是这一旅程的第一步。
海螺AI在线视频生成器,用文字创造视频。
Hailuo AI是由MiniMax开发的一款先进的人工智能生产力工具,旨在改变视频内容创作的方式。这一创新平台允许用户通过简单的文字提示生成高质量的视频,特别适合营销人员、教育工作者和内容创作者使用。Hailuo AI以其快速的处理时间和广泛的艺术风格而表现出色,结合文本和图像提示的功能可实现高度个性化的输出,因此对追求灵活性的创作者很有吸引力。
开源视频生成模型
genmoai/models 是一个开源的视频生成模型,代表了视频生成技术的最新进展。该模型名为 Mochi 1,是一个基于 Asymmetric Diffusion Transformer (AsymmDiT) 架构的10亿参数扩散模型,从零开始训练,是迄今为止公开发布的最大的视频生成模型。它具有高保真运动和强提示遵循性,显著缩小了封闭和开放视频生成系统之间的差距。该模型在 Apache 2.0 许可下发布,用户可以在 Genmo 的 playground 上免费试用此模型。
开源视频生成模型
Mochi 1 是 Genmo 公司推出的一款研究预览版本的开源视频生成模型,它致力于解决当前AI视频领域的基本问题。该模型以其无与伦比的运动质量、卓越的提示遵循能力和跨越恐怖谷的能力而著称,能够生成连贯、流畅的人类动作和表情。Mochi 1 的开发背景是响应对高质量视频内容生成的需求,特别是在游戏、电影和娱乐行业中。产品目前提供免费试用,具体定价信息未在页面中提供。
先进的文本到视频生成模型
Allegro是由Rhymes AI开发的高级文本到视频模型,它能够将简单的文本提示转换成高质量的短视频片段。Allegro的开源特性使其成为创作者、开发者和AI视频生成领域研究人员的强大工具。Allegro的主要优点包括开源、内容创作多样化、高质量输出以及模型体积小且高效。它支持多种精度(FP32、BF16、FP16),在BF16模式下,GPU内存使用量为9.3 GB,上下文长度为79.2k,相当于88帧。Allegro的技术核心包括大规模视频数据处理、视频压缩成视觉令牌以及扩展视频扩散变换器。
视频生成评估基准测试
Movie Gen Bench是由Facebook Research发布的视频生成评估基准测试,旨在为未来在视频生成领域的研究提供公平且易于比较的标准。该基准测试包括Movie Gen Video Bench和Movie Gen Audio Bench两个部分,分别针对视频内容生成和音频生成进行评估。Movie Gen Bench的发布,对于推动视频生成技术的发展和评估具有重要意义,它能够帮助研究人员和开发者更好地理解和改进视频生成模型的性能。
重新定义视频创作
Hailuo AI Video Generator 是一款利用人工智能技术,根据文本提示自动生成视频内容的工具。它通过深度学习算法,将用户的文字描述转化为视觉图像,极大地简化了视频制作流程,提高了创作效率。该产品适用于需要快速生成视频内容的个人和企业,特别是在广告、社交媒体内容制作和电影预览等领域。
数字人模型,支持生成普通话视频
JoyHallo是一个数字人模型,专为普通话视频生成而设计。它通过收集来自京东健康国际有限公司员工的29小时普通话视频,创建了jdh-Hallo数据集。该数据集覆盖了不同年龄和说话风格,包括对话和专业医疗话题。JoyHallo模型采用中国wav2vec2模型进行音频特征嵌入,并提出了一种半解耦结构来捕捉唇部、表情和姿态特征之间的相互关系,提高了信息利用效率,并加快了推理速度14.3%。此外,JoyHallo在生成英语视频方面也表现出色,展现了卓越的跨语言生成能力。
© 2024 AIbase 备案号:闽ICP备08105208号-14