需求人群:
"该模型适用于需要快速生成视频内容的用户,如视频创作者、广告制作人员、内容开发者等。它可以帮助用户在短时间内生成高质量的视频,节省时间和精力,提高创作效率。同时,其开源特性也适合研究人员和开发者进行进一步的开发和研究。"
使用场景示例:
视频创作者可以使用该模型快速生成视频素材,提高创作效率。
广告制作人员可以利用该模型快速生成广告视频,节省制作成本。
研究人员可以基于该模型进行进一步的研究和开发,探索新的视频生成技术。
产品特色:
高效的图像到视频生成,可在一分钟内生成一分钟的视频。
支持文本到图像和图像到视频的两阶段生成,优化内存使用和推理延迟。
提供量化功能,进一步优化模型性能。
支持单 GPU 和多 GPU 推理,灵活适应不同硬件环境。
开源代码和模型权重,方便用户进行二次开发和研究。
提供详细的使用文档和脚本,方便用户快速上手。
支持多种预训练模型组件的下载和使用。
使用教程:
1. 安装 git-lfs,并使用 conda 创建项目环境。
2. 安装项目依赖,运行命令 pip install -r requirements.txt。
3. 创建权重目录 pretrained_weights,并下载模型权重及相关组件。
4. 运行脚本 python test_ti2v.py 或 bash scripts/run_flashatt3.sh 进行推理。
5. 根据需要启用量化功能或调整多 GPU 配置。
浏览量:35
最新流量情况
月访问量
5.03m
平均访问时长
00:06:29
每次访问页数
5.88
跳出率
37.10%
流量来源
直接访问
52.07%
自然搜索
32.84%
邮件
0.04%
外链引荐
12.88%
社交媒体
2.04%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
12.85%
德国
3.90%
印度
9.41%
俄罗斯
4.16%
美国
18.95%
Magic 1-For-1 是一个高效的图像到视频生成模型,可在一分钟内生成一分钟的视频。
Magic 1-For-1 是一个专注于高效视频生成的模型,其核心功能是将文本和图像快速转换为视频。该模型通过将文本到视频的生成任务分解为文本到图像和图像到视频两个子任务,优化了内存使用并减少了推理延迟。其主要优点包括高效性、低延迟和可扩展性。该模型由北京大学 DA-Group 团队开发,旨在推动交互式基础视频生成领域的发展。目前该模型及相关代码已开源,用户可以免费使用,但需遵守开源许可协议。
开源图像到视频生成模型
Ruyi-Mini-7B是由CreateAI团队开发的开源图像到视频生成模型,具有约71亿参数,能够从输入图像生成360p到720p分辨率的视频帧,最长5秒。模型支持不同宽高比,并增强了运动和相机控制功能,提供更大的灵活性和创造力。该模型在Apache 2.0许可下发布,意味着用户可以自由使用和修改。
文本图像到视频生成模型
Allegro-TI2V是一个文本图像到视频生成模型,它能够根据用户提供的提示和图像生成视频内容。该模型以其开源性、多样化的内容创作能力、高质量的输出、小巧高效的模型参数以及支持多种精度和GPU内存优化而受到关注。它代表了当前人工智能技术在视频生成领域的前沿进展,具有重要的技术价值和商业应用潜力。Allegro-TI2V模型在Hugging Face平台上提供,遵循Apache 2.0开源协议,用户可以免费下载和使用。
创意智能平台,用于构建魔法般的AI产品
Dream Machine API是一个创意智能平台,它提供了一系列先进的视频生成模型,通过直观的API和开源SDKs,用户可以构建和扩展创意AI产品。该平台拥有文本到视频、图像到视频、关键帧控制、扩展、循环和相机控制等功能,旨在通过创意智能与人类合作,帮助他们创造更好的内容。Dream Machine API的推出,旨在推动视觉探索和创造的丰富性,让更多的想法得以尝试,构建更好的叙事,并让那些以前无法做到的人讲述多样化的故事。
文本到视频生成领域的先进模型架构
Open-Sora Plan v1.2是一个开源的视频生成模型,专注于文本到视频的转换任务。它采用3D全注意力架构,优化了视频的视觉表示,并提高了推理效率。该模型在视频生成领域具有创新性,能够更好地捕捉联合空间-时间特征,为视频内容的自动生成提供了新的技术路径。
文本到视频生成的开源模型,性能卓越。
Open-Sora-Plan是一个由北京大学元组团队开发的文本到视频生成模型。它在2024年4月首次推出v1.0.0版本,以其简单高效的设计和显著的性能在文本到视频生成领域获得了广泛认可。v1.1.0版本在视频生成质量和持续时间上进行了显著改进,包括更优的压缩视觉表示、更高的生成质量和更长的视频生成能力。该模型采用了优化的CausalVideoVAE架构,具有更强的性能和更高的推理效率。此外,它还保持了v1.0.0版本的极简设计和数据效率,并且与Sora基础模型的性能相似,表明其版本演进与Sora展示的扩展法则一致。
一款面向高质量长视频生成的实验性框架,具有扩展序列长度和增强动态特性。
Mira(Mini-Sora)是一个实验性的项目,旨在探索高质量、长时视频生成领域,特别是在模仿Sora风格的视频生成方面。它在现有文本到视频(T2V)生成框架的基础上,通过以下几个关键方面实现突破:扩展序列长度、增强动态特性以及保持3D一致性。目前,Mira项目处于实验阶段,与Sora等更高级的视频生成技术相比,仍有提升空间。
AI革命性地改变了内容创作,利用先进的视频生成技术,将文本和图像转化为动态视频,实现视频到视频的创作。探索数字故事讲述的未来。
AI SORA TECH是一款革命性的内容创作工具,利用先进的视频生成技术,将文本和图像转化为动态视频,并支持视频到视频的创作。它可以根据输入的文本或图像生成整个视频或延长现有视频的长度,满足各种视频制作需求。AI SORA TECH的功能丰富,操作简便,适用于专业人士和初学者。
SkyReels V1 是一个开源的人类中心视频基础模型,专注于高质量影视级视频生成。
SkyReels V1 是一个基于 HunyuanVideo 微调的人类中心视频生成模型。它通过高质量影视片段训练,能够生成具有电影级质感的视频内容。该模型在开源领域达到了行业领先水平,尤其在面部表情捕捉和场景理解方面表现出色。其主要优点包括开源领先性、先进的面部动画技术和电影级光影美学。该模型适用于需要高质量视频生成的场景,如影视制作、广告创作等,具有广泛的应用前景。
FlashVideo 是一个高效的高分辨率视频生成模型,专注于细节和保真度的流动。
FlashVideo 是一款专注于高效高分辨率视频生成的深度学习模型。它通过分阶段的生成策略,首先生成低分辨率视频,再通过增强模型提升至高分辨率,从而在保证细节的同时显著降低计算成本。该技术在视频生成领域具有重要意义,尤其是在需要高质量视觉内容的场景中。FlashVideo 适用于多种应用场景,包括内容创作、广告制作和视频编辑等。其开源性质使得研究人员和开发者可以灵活地进行定制和扩展。
OmniParser 是一款通用屏幕解析工具,可将 UI 截图转换为结构化格式,提升基于 LLM 的 UI 代理性能。
OmniParser 是微软开发的一种先进的图像解析技术,旨在将不规则的屏幕截图转换为结构化的元素列表,包括可交互区域的位置和图标的功能描述。它通过深度学习模型,如 YOLOv8 和 Florence-2,实现了对 UI 界面的高效解析。该技术的主要优点在于其高效性、准确性和广泛的适用性。OmniParser 可以显著提高基于大型语言模型(LLM)的 UI 代理的性能,使其能够更好地理解和操作各种用户界面。它在多种应用场景中表现出色,如自动化测试、智能助手开发等。OmniParser 的开源特性和灵活的许可证使其成为开发者和研究人员的有力工具。
On-device Sora 是一个基于扩散模型的移动设备端文本到视频生成项目。
On-device Sora 是一个开源项目,旨在通过线性比例跳跃(LPL)、时间维度标记合并(TDTM)和动态加载并发推理(CI-DL)等技术,实现在移动设备(如 iPhone 15 Pro)上高效的视频生成。该项目基于 Open-Sora 模型开发,能够根据文本输入生成高质量视频。其主要优点包括高效性、低功耗和对移动设备的优化。该技术适用于需要在移动设备上快速生成视频内容的场景,如短视频创作、广告制作等。项目目前开源,用户可以免费使用。
一种用于控制视频扩散模型运动模式的高效方法,支持运动模式的自定义和迁移。
Go with the Flow 是一种创新的视频生成技术,通过使用扭曲噪声代替传统的高斯噪声,实现了对视频扩散模型运动模式的高效控制。该技术无需对原始模型架构进行修改,即可在不增加计算成本的情况下,实现对视频中物体和相机运动的精确控制。其主要优点包括高效性、灵活性和可扩展性,能够广泛应用于图像到视频生成、文本到视频生成等多种场景。该技术由 Netflix Eyeline Studios 等机构的研究人员开发,具有较高的学术价值和商业应用潜力,目前开源免费提供给公众使用。
一款基于StyleTTS 2架构的先进AI文本转语音模型,拥有8200万参数,提供高质量的自然语音合成。
Kokoro TTS是一款专注于文本转语音的AI模型,其主要功能是将文本内容转换为自然流畅的语音输出。该模型基于StyleTTS 2架构,拥有8200万参数,能够在保持高质量语音合成的同时,提供高效的性能和较低的资源消耗。其多语言支持和可定制的语音包使其能够满足不同用户在多种场景下的需求,如制作有声读物、播客、培训视频等,尤其适合教育领域,帮助提升内容的可访问性和吸引力。此外,Kokoro TTS是开源的,用户可以免费使用,这使得它在成本效益上具有显著优势。
一种新颖的图像到视频采样技术,基于Hunyuan模型实现高质量视频生成。
leapfusion-hunyuan-image2video 是一种基于 Hunyuan 模型的图像到视频生成技术。它通过先进的深度学习算法,将静态图像转换为动态视频,为内容创作者提供了一种全新的创作方式。该技术的主要优点包括高效的内容生成、灵活的定制化能力以及对高质量视频输出的支持。它适用于需要快速生成视频内容的场景,如广告制作、视频特效等领域。该模型目前以开源形式发布,供开发者和研究人员免费使用,未来有望通过社区贡献进一步提升其性能。
SmolVLM-500M 是一个轻量级多模态模型,能够处理图像和文本输入并生成文本输出。
SmolVLM-500M 是由 Hugging Face 开发的轻量级多模态模型,属于 SmolVLM 系列。该模型基于 Idefics3 架构,专注于高效的图像和文本处理任务。它能够接受任意顺序的图像和文本输入,生成文本输出,适用于图像描述、视觉问答等任务。其轻量级架构使其能够在资源受限的设备上运行,同时保持强大的多模态任务性能。该模型采用 Apache 2.0 许可证,支持开源和灵活的使用场景。
一个开源项目,用于在浏览器中演示 AI 视频生成模型。
video-starter-kit 是一个强大的开源工具包,用于构建基于 AI 的视频应用。它基于 Next.js、Remotion 和 fal.ai 构建,简化了在浏览器中使用 AI 视频模型的复杂性。该工具包支持多种先进的视频处理功能,如多剪辑视频合成、音频轨道集成和语音支持等,同时提供了开发者友好的工具,如元数据编码和视频处理管道。它适用于需要高效视频生成和处理的开发者和创作者。
一款能够生成电影级质量视频的图像到视频模型
Ruyi-Models是一个图像到视频的模型,能够生成高达768分辨率、每秒24帧的电影级视频,支持镜头控制和运动幅度控制。使用RTX 3090或RTX 4090显卡,可以无损生成512分辨率、120帧的视频。该模型以其高质量的视频生成能力和对细节的精确控制而受到关注,尤其在需要生成高质量视频内容的领域,如电影制作、游戏制作和虚拟现实体验中具有重要应用价值。
基于HunyuanVideo的视频生成工具,支持图像到视频的转换
ComfyUI-HunyuanVideoWrapper-IP2V是一个基于HunyuanVideo的视频生成工具,它允许用户通过图像提示生成视频(IP2V),即利用图像作为生成视频的条件,提取图像的概念和风格。这项技术主要优点在于能够将图像的风格和内容融入视频生成过程中,而不仅仅是作为视频的第一帧。产品背景信息显示,该工具目前处于实验阶段,但已经可以工作,且对VRAM有较高要求,至少需要20GB。
探索AI前沿,精选国内外AI产品与应用。
智趣AI甄选是一个专注于人工智能领域的综合性平台,旨在洞察行业发展前景,精选并展示国内外的AI产品与应用。平台提供丰富的学习资源,行业融合案例分析,助力用户洞悉AI发展趋势,与AI技术同行,共创未来。
腾讯开源的大型视频生成模型训练框架
HunyuanVideo是腾讯开源的一个系统性框架,用于训练大型视频生成模型。该框架通过采用数据策划、图像-视频联合模型训练和高效的基础设施等关键技术,成功训练了一个超过130亿参数的视频生成模型,是所有开源模型中最大的。HunyuanVideo在视觉质量、运动多样性、文本-视频对齐和生成稳定性方面表现出色,超越了包括Runway Gen-3、Luma 1.6在内的多个行业领先模型。通过开源代码和模型权重,HunyuanVideo旨在缩小闭源和开源视频生成模型之间的差距,推动视频生成生态系统的活跃发展。
基于频率分解的身份保持文本到视频生成模型
ConsisID是一个基于频率分解的身份保持文本到视频生成模型,它通过在频域中使用身份控制信号来生成与输入文本描述一致的高保真度视频。该模型不需要针对不同案例进行繁琐的微调,并且能够保持生成视频中人物身份的一致性。ConsisID的提出,推动了视频生成技术的发展,特别是在无需调整的流程和频率感知的身份保持控制方案方面。
实时AI视频生成开源模型
LTXV是Lightricks推出的一个实时AI视频生成开源模型,它代表了视频生成技术的最新发展。LTXV能够提供可扩展的长视频制作能力,优化了GPU和TPU系统,大幅减少了视频生成时间,同时保持了高视觉质量。LTXV的独特之处在于其帧到帧学习技术,确保了帧之间的连贯性,消除了闪烁和场景内的不一致问题。这一技术对于视频制作行业来说是一个巨大的进步,因为它不仅提高了效率,还提升了视频内容的质量。
高效率自回归视频生成模型
Pyramid Flow miniFLUX是一个基于流匹配的自回归视频生成方法,专注于训练效率和开源数据集的使用。该模型能够生成高质量的10秒768p分辨率、24帧每秒的视频,并自然支持图像到视频的生成。它是视频内容创作和研究领域的一个重要工具,尤其在需要生成连贯动态图像的场合。
免费 npm 库,用 Llama 3.2 Vision 进行 OCR,输出 markdown 文本
开源 npm 库,免费使用 Llama 3.2 Vision 进行 OCR,支持本地和远程图像,计划支持 PDF,受 Zerox 启发,有免费和付费接口
开源视频生成模型,支持10秒视频和更高分辨率。
CogVideoX1.5-5B-SAT是由清华大学知识工程与数据挖掘团队开发的开源视频生成模型,是CogVideoX模型的升级版。该模型支持生成10秒视频,并支持更高分辨率的视频生成。模型包含Transformer、VAE和Text Encoder等模块,能够根据文本描述生成视频内容。CogVideoX1.5-5B-SAT模型以其强大的视频生成能力和高分辨率支持,为视频内容创作者提供了一个强大的工具,尤其在教育、娱乐和商业领域有着广泛的应用前景。
海螺AI在线视频生成器,用文字创造视频。
Hailuo AI是由MiniMax开发的一款先进的人工智能生产力工具,旨在改变视频内容创作的方式。这一创新平台允许用户通过简单的文字提示生成高质量的视频,特别适合营销人员、教育工作者和内容创作者使用。Hailuo AI以其快速的处理时间和广泛的艺术风格而表现出色,结合文本和图像提示的功能可实现高度个性化的输出,因此对追求灵活性的创作者很有吸引力。
Mochi视频生成器的ComfyUI包装节点
ComfyUI-MochiWrapper是一个用于Mochi视频生成器的包装节点,它允许用户通过ComfyUI界面与Mochi模型进行交互。这个项目主要优点是能够利用Mochi模型生成视频内容,并且通过ComfyUI简化了操作流程。它是基于Python开发的,并且完全开源,允许开发者自由地使用和修改。目前该项目还处于积极开发中,已经有一些基本功能,但还没有正式发布版本。
© 2025 AIbase 备案号:闽ICP备08105208号-14