需求人群:
["生成图像条件视频","视频生成预训练"]
使用场景示例:
输入一张静态图像,输出这张图像中的场景在移动中的视频
预训练一个稳定高效的视频生成模型,应用在视频编辑等领域
输入文本描述,生成对应情景的视频
产品特色:
少步生成高质量视频
计算量小
无需分类器引导
浏览量:824
最新流量情况
月访问量
19075.32k
平均访问时长
00:05:32
每次访问页数
5.52
跳出率
45.07%
流量来源
直接访问
48.31%
自然搜索
36.36%
邮件
0.03%
外链引荐
12.17%
社交媒体
3.11%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.13%
印度
7.59%
日本
3.67%
俄罗斯
6.13%
美国
18.18%
一种稳定高效的视频生成模型
AnimateLCM-SVD-xt是一种新的图像到视频生成模型,可以在很少的步骤内生成高质量、连贯性好的视频。该模型通过一致性知识蒸馏和立体匹配学习技术,使生成视频更加平稳连贯,同时大大减少了计算量。关键特点包括:1) 4-8步内生成25帧576x1024分辨率视频;2) 比普通视频diffusion模型降低12.5倍计算量;3) 生成视频质量好,无需额外分类器引导。
创意智能平台,用于构建魔法般的AI产品
Dream Machine API是一个创意智能平台,它提供了一系列先进的视频生成模型,通过直观的API和开源SDKs,用户可以构建和扩展创意AI产品。该平台拥有文本到视频、图像到视频、关键帧控制、扩展、循环和相机控制等功能,旨在通过创意智能与人类合作,帮助他们创造更好的内容。Dream Machine API的推出,旨在推动视觉探索和创造的丰富性,让更多的想法得以尝试,构建更好的叙事,并让那些以前无法做到的人讲述多样化的故事。
由上海人工智能实验室开发的先进视频生成模型
Vchitect 2.0(筑梦2.0)是一款由上海人工智能实验室开发的高级视频生成模型,旨在赋予视频创作新的动力。它支持20秒视频生成,灵活的宽高比,生成空间时间增强,以及长视频评估。Vchitect 2.0通过其先进的技术,能够将静态图像转换为5-10秒的视频,使用户能够轻松地将照片或设计转换为引人入胜的视觉体验。此外,Vchitect 2.0还支持长视频生成模型的评估,通过VBench平台,提供全面且持续更新的评估排行榜,支持多种长视频模型,如Gen-3、Kling、OpenSora等。
高效生成一致性人物视频动画的模型
UniAnimate是一个用于人物图像动画的统一视频扩散模型框架。它通过将参考图像、姿势指导和噪声视频映射到一个共同的特征空间,以减少优化难度并确保时间上的连贯性。UniAnimate能够处理长序列,支持随机噪声输入和首帧条件输入,显著提高了生成长期视频的能力。此外,它还探索了基于状态空间模型的替代时间建模架构,以替代原始的计算密集型时间Transformer。UniAnimate在定量和定性评估中都取得了优于现有最先进技术的合成结果,并且能够通过迭代使用首帧条件策略生成高度一致的一分钟视频。
3D一致性的视频生成框架
CamCo是一个创新的图像到视频生成框架,它能够生成具有3D一致性的高质量视频。该框架通过Plücker坐标引入相机信息,并提出了一种符合几何一致性的双线约束注意力模块。此外,CamCo在通过运动结构算法估计相机姿态的真实世界视频上进行了微调,以更好地合成物体运动。
Sora AI 开发的纯文本到视频生成模型
Sora 是 OpenAI 开发的文本到视频生成模型,能够根据文本描述生成长达1分钟的逼真图像序列。它具有理解和模拟物理世界运动的能力,目标是训练出帮助人们解决需要实物交互的问题的模型。Sora 可以解释长篇提示,根据文本输入生成各种人物、动物、景观和城市景象。它的缺点是难以准确描绘复杂场景的物理学以及理解因果关系。
AI革命性地改变了内容创作,利用先进的视频生成技术,将文本和图像转化为动态视频,实现视频到视频的创作。探索数字故事讲述的未来。
AI SORA TECH是一款革命性的内容创作工具,利用先进的视频生成技术,将文本和图像转化为动态视频,并支持视频到视频的创作。它可以根据输入的文本或图像生成整个视频或延长现有视频的长度,满足各种视频制作需求。AI SORA TECH的功能丰富,操作简便,适用于专业人士和初学者。
基于Segment-Anything-2和Segment-Anything-1的自动全视频分割工具
AutoSeg-SAM2是一个基于Segment-Anything-2(SAM2)和Segment-Anything-1(SAM1)的自动全视频分割工具,它能够对视频中的每个对象进行追踪,并检测可能的新对象。该工具的重要性在于它能够提供静态分割结果,并利用SAM2对这些结果进行追踪,这对于视频内容分析、对象识别和视频编辑等领域具有重要意义。产品背景信息显示,它是由zrporz开发的,并且是基于Facebook Research的SAM2和zrporz自己的SAM1。价格方面,由于这是一个开源项目,因此它是免费的。
统一可控的视频生成方法
AnimateAnything是一个统一的可控视频生成方法,它支持在不同条件下进行精确和一致的视频操作,包括相机轨迹、文本提示和用户动作注释。该技术通过设计多尺度控制特征融合网络来构建不同条件下的通用运动表示,并将所有控制信息转换为逐帧光流,以此作为运动先导来指导视频生成。此外,为了减少大规模运动引起的闪烁问题,提出了基于频率的稳定模块,以确保视频在频域的一致性,增强时间连贯性。实验表明,AnimateAnything的方法优于现有的最先进方法。
一站式OCR代理,快速从图像中生成洞见。
TurboLens是一个集OCR、计算机视觉和生成式AI于一体的全功能平台,它能够自动化地从非结构化图像中快速生成洞见,简化工作流程。产品背景信息显示,TurboLens旨在通过其创新的OCR技术和AI驱动的翻译及分析套件,从印刷和手写文档中提取定制化的洞见。此外,TurboLens还提供了数学公式和表格识别功能,将图像转换为可操作的数据,并将数学公式翻译成LaTeX格式,表格转换为Excel格式。产品价格方面,TurboLens提供免费和付费两种计划,满足不同用户的需求。
3D网格生成与语言模型的统一
LLaMA-Mesh是一项将大型语言模型(LLMs)预训练在文本上扩展到生成3D网格的能力的技术。这项技术利用了LLMs中已经嵌入的空间知识,并实现了对话式3D生成和网格理解。LLaMA-Mesh的主要优势在于它能够将3D网格的顶点坐标和面定义表示为纯文本,允许与LLMs直接集成而无需扩展词汇表。该技术的主要优点包括能够从文本提示生成3D网格、按需产生交错的文本和3D网格输出,以及理解和解释3D网格。LLaMA-Mesh在保持强大的文本生成性能的同时,实现了与从头开始训练的模型相当的网格生成质量。
使用先进计算机视觉算法进行自动、准确计数的应用。
CountAnything是一个前沿应用,利用先进的计算机视觉算法实现自动、准确的物体计数。它适用于多种场景,包括工业、养殖业、建筑、医药和零售等。该产品的主要优点在于其高精度和高效率,能够显著提升计数工作的准确性和速度。产品背景信息显示,CountAnything目前已开放给非中国大陆地区用户使用,并且提供免费试用。
高效率自回归视频生成模型
Pyramid Flow miniFLUX是一个基于流匹配的自回归视频生成方法,专注于训练效率和开源数据集的使用。该模型能够生成高质量的10秒768p分辨率、24帧每秒的视频,并自然支持图像到视频的生成。它是视频内容创作和研究领域的一个重要工具,尤其在需要生成连贯动态图像的场合。
视频扩散模型,用于虚拟试穿。
Fashion-VDM是一个视频扩散模型(VDM),用于生成虚拟试穿视频。该模型接受一件衣物图片和人物视频作为输入,旨在生成人物穿着给定衣物的高质量试穿视频,同时保留人物的身份和动作。与传统的基于图像的虚拟试穿相比,Fashion-VDM在衣物细节和时间一致性方面表现出色。该技术的主要优点包括:扩散式架构、分类器自由引导增强控制、单次64帧512px视频生成的渐进式时间训练策略,以及联合图像-视频训练的有效性。Fashion-VDM在视频虚拟试穿领域树立了新的行业标准。
利用NVIDIA AI构建视频搜索和摘要代理
NVIDIA AI Blueprint for Video Search and Summarization是一个基于NVIDIA NIM微服务和生成式AI模型的参考工作流程,用于构建能够理解自然语言提示并执行视觉问题回答的视觉AI代理。这些代理可以部署在工厂、仓库、零售店、机场、交通路口等多种场景中,帮助运营团队从自然交互中生成的丰富洞察中做出更好的决策。
开源视频生成模型,支持10秒视频和更高分辨率。
CogVideoX1.5-5B-SAT是由清华大学知识工程与数据挖掘团队开发的开源视频生成模型,是CogVideoX模型的升级版。该模型支持生成10秒视频,并支持更高分辨率的视频生成。模型包含Transformer、VAE和Text Encoder等模块,能够根据文本描述生成视频内容。CogVideoX1.5-5B-SAT模型以其强大的视频生成能力和高分辨率支持,为视频内容创作者提供了一个强大的工具,尤其在教育、娱乐和商业领域有着广泛的应用前景。
用户视频的生成性视频摄像机控制
ReCapture是一种从单一用户提供的视频生成新视频和新颖摄像机轨迹的方法。该技术允许我们从完全不同的角度重新生成源视频,并带有电影级别的摄像机运动。ReCapture通过使用多视图扩散模型或基于深度的点云渲染生成带有新摄像机轨迹的嘈杂锚视频,然后通过我们提出的掩蔽视频微调技术将锚视频重新生成为干净且时间上一致的重新角度视频。这种技术的重要性在于它能够利用视频模型的强大先验,将近似的视频重新生成为时间上一致且美观的视频。
高度表现力的肖像动画技术
字节跳动智能创作团队推出最新单图视频驱动技术 X-Portrait 2。X-Portrait 2是一种肖像动画技术,它通过用户提供的静态肖像图像和驱动表演视频,能够生成具有高度表现力和真实感的角色动画和视频片段。这项技术显著降低了现有的动作捕捉、角色动画和内容创作流程的复杂性。X-Portrait 2通过构建一个最先进的表情编码器模型,隐式编码输入中的每一个微小表情,并通过大规模数据集进行训练。然后,该编码器与强大的生成扩散模型结合,生成流畅且富有表现力的视频。X-Portrait 2能够传递微妙和微小的面部表情,包括撅嘴、吐舌、脸颊充气和皱眉等具有挑战性的表情,并在生成的视频中实现高保真的情感传递。
ComfyUI中集成的最新视频生成模型
Mochi是Genmo最新推出的开源视频生成模型,它在ComfyUI中经过优化,即使使用消费级GPU也能实现。Mochi以其高保真度动作和卓越的提示遵循性而著称,为ComfyUI社区带来了最先进的视频生成能力。Mochi模型在Apache 2.0许可下发布,这意味着开发者和创作者可以自由使用、修改和集成Mochi,而不受限制性许可的阻碍。Mochi能够在消费级GPU上运行,如4090,且在ComfyUI中支持多种注意力后端,使其能够适应小于24GB的VRAM。
生成任何3D和4D场景的先进框架
GenXD是一个专注于3D和4D场景生成的框架,它利用日常生活中常见的相机和物体运动来联合研究一般的3D和4D生成。由于社区缺乏大规模的4D数据,GenXD首先提出了一个数据策划流程,从视频中获取相机姿态和物体运动强度。基于此流程,GenXD引入了一个大规模的现实世界4D场景数据集:CamVid-30K。通过利用所有3D和4D数据,GenXD框架能够生成任何3D或4D场景。它提出了多视图-时间模块,这些模块分离相机和物体运动,无缝地从3D和4D数据中学习。此外,GenXD还采用了掩码潜在条件,以支持多种条件视图。GenXD能够生成遵循相机轨迹的视频以及可以提升到3D表示的一致3D视图。它在各种现实世界和合成数据集上进行了广泛的评估,展示了GenXD在3D和4D生成方面与以前方法相比的有效性和多功能性。
生成和交互控制开放世界游戏视频的扩散变换模型
GameGen-X是专为生成和交互控制开放世界游戏视频而设计的扩散变换模型。该模型通过模拟游戏引擎的多种特性,如创新角色、动态环境、复杂动作和多样事件,实现了高质量、开放领域的视频生成。此外,它还提供了交互控制能力,能够根据当前视频片段预测和改变未来内容,从而实现游戏玩法模拟。为了实现这一愿景,我们首先从零开始收集并构建了一个开放世界视频游戏数据集(OGameData),这是第一个也是最大的开放世界游戏视频生成和控制数据集,包含超过150款游戏的100多万个多样化游戏视频片段,这些片段都配有GPT-4o的信息性字幕。GameGen-X经历了两阶段的训练过程,包括基础模型预训练和指令调优。首先,模型通过文本到视频生成和视频续集进行预训练,赋予了其长序列、高质量开放领域游戏视频生成的能力。进一步,为了实现交互控制能力,我们设计了InstructNet来整合与游戏相关的多模态控制信号专家。这使得模型能够根据用户输入调整潜在表示,首次在视频生成中统一角色交互和场景内容控制。在指令调优期间,只有InstructNet被更新,而预训练的基础模型被冻结,使得交互控制能力的整合不会损失生成视频内容的多样性和质量。GameGen-X代表了使用生成模型进行开放世界视频游戏设计的一次重大飞跃。它展示了生成模型作为传统渲染技术的辅助工具的潜力,有效地将创造性生成与交互能力结合起来。
业界领先的开源大型混合专家模型
Tencent-Hunyuan-Large(混元大模型)是由腾讯推出的业界领先的开源大型混合专家(MoE)模型,拥有3890亿总参数和520亿激活参数。该模型在自然语言处理、计算机视觉和科学任务等领域取得了显著进展,特别是在处理长上下文输入和提升长上下文任务处理能力方面表现出色。混元大模型的开源,旨在激发更多研究者的创新灵感,共同推动AI技术的进步和应用。
基于Transformer的实时开放世界AI模型
Oasis是由Decart AI开发的首个可玩、实时、开放世界的AI模型,它是一个互动视频游戏,由Transformer端到端生成,基于逐帧生成。Oasis能够接收用户键盘和鼠标输入,实时生成游戏玩法,内部模拟物理、游戏规则和图形。该模型通过直接观察游戏玩法学习,允许用户移动、跳跃、拾取物品、破坏方块等。Oasis被视为研究更复杂交互世界的基础模型的第一步,未来可能取代传统的游戏引擎。Oasis的实现需要模型架构的改进和模型推理技术的突破,以实现用户与模型的实时交互。Decart AI采用了最新的扩散训练和Transformer模型方法,并结合了大型语言模型(LLMs)来训练一个自回归模型,该模型可以根据用户即时动作生成视频。此外,Decart AI还开发了专有的推理框架,以提供NVIDIA H100 Tensor Core GPU的峰值利用率,并支持Etched即将推出的Sohu芯片。
首款实时生成式AI开放世界模型
Decart是一个高效的AI平台,提供了在训练和推理大型生成模型方面的数量级改进。利用这些先进的能力,Decart能够训练基础的生成交互模型,并使每个人都能在实时中访问。Decart的OASIS模型是一个实时生成的AI开放世界模型,代表了实时视频生成的未来。该平台还提供了对1000+ NVIDIA H100 Tensor Core GPU集群进行训练或推理的能力,为AI视频生成领域带来了突破性进展。
海螺AI在线视频生成器,用文字创造视频。
Hailuo AI是由MiniMax开发的一款先进的人工智能生产力工具,旨在改变视频内容创作的方式。这一创新平台允许用户通过简单的文字提示生成高质量的视频,特别适合营销人员、教育工作者和内容创作者使用。Hailuo AI以其快速的处理时间和广泛的艺术风格而表现出色,结合文本和图像提示的功能可实现高度个性化的输出,因此对追求灵活性的创作者很有吸引力。
大规模视频生成的自回归扩散模型
MarDini是Meta AI Research推出的一款视频扩散模型,它将掩码自回归(MAR)的优势整合到统一的扩散模型(DM)框架中。该模型能够根据任意数量的掩码帧在任意帧位置进行视频生成,支持视频插值、图像到视频生成以及视频扩展等多种视频生成任务。MarDini的设计高效,将大部分计算资源分配给低分辨率规划模型,使得在大规模上进行空间-时间注意力成为可能。MarDini在视频插值方面树立了新的标杆,并且在几次推理步骤内,就能高效生成与更昂贵的高级图像到视频模型相媲美的视频。
视频扩散模型加速工具,无需训练即可生成高质量视频内容。
FasterCache是一种创新的无需训练的策略,旨在加速视频扩散模型的推理过程,并生成高质量的视频内容。这一技术的重要性在于它能够显著提高视频生成的效率,同时保持或提升内容的质量,这对于需要快速生成视频内容的行业来说是非常有价值的。FasterCache由来自香港大学、南洋理工大学和上海人工智能实验室的研究人员共同开发,项目页面提供了更多的视觉结果和详细信息。产品目前免费提供,主要面向视频内容生成、AI研究和开发等领域。
Mochi视频生成器的ComfyUI包装节点
ComfyUI-MochiWrapper是一个用于Mochi视频生成器的包装节点,它允许用户通过ComfyUI界面与Mochi模型进行交互。这个项目主要优点是能够利用Mochi模型生成视频内容,并且通过ComfyUI简化了操作流程。它是基于Python开发的,并且完全开源,允许开发者自由地使用和修改。目前该项目还处于积极开发中,已经有一些基本功能,但还没有正式发布版本。
© 2024 AIbase 备案号:闽ICP备08105208号-14