需求人群:
"可用于各类文本到视频任务,如故事视频、商业广告、课程演示等自动视频内容生成。"
使用场景示例:
根据广告语‘小白兔奶糖,好吃不上火’生成相关视频。
输入‘一只猫正在追逐蝴蝶’生成相关短视频。
输入'புத்தாண்டு வாழ்த்துக்கள்'生成相关的新年问候视频。
产品特色:
延伸EDM框架支持视频生成
提出transformer可伸缩架构
空间时间联合建模
高质量和时间连贯的视频合成
浏览量:566
最新流量情况
月访问量
16.15k
平均访问时长
00:00:10
每次访问页数
1.24
跳出率
50.09%
流量来源
直接访问
46.50%
自然搜索
37.86%
邮件
0.06%
外链引荐
10.30%
社交媒体
4.71%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
加拿大
9.17%
英国
6.74%
印度
5.36%
美国
49.13%
越南
10.18%
Snap视频:用于文本到视频合成的可扩展空间时间转换器
Snap视频是一个视频优先的模型,通过延伸EDM框架系统地解决视频生成域中的运动保真度、视觉质量和可扩展性等挑战。该模型利用帧间的冗余信息,提出了一个可伸缩的transformer架构,将空间和时间维度作为一个高度压缩的1D潜在向量,从而有效地进行空间时间联合建模,合成时间连贯性强、运动复杂的视频。这种架构使模型可以高效训练,达到数十亿参数规模,在多项基准测试中取得最优效果。
基于Transformer的通用领域文本到图像生成
CogView是一个用于通用领域文本到图像生成的预训练Transformer模型。该模型包含410亿参数,能够生成高质量、多样化的图像。模型的训练思路采用抽象到具体的方式,先 pretrain 获得通用知识,然后 finetune 在特定域生成图像,能显著提升生成质量。值得一提的是,论文还提出了两种帮助大模型稳定训练的技巧:PB-relax 和 Sandwich-LN。
利用像素空间拉普拉斯扩散模型生成高质量图像
Edify Image是NVIDIA推出的一款图像生成模型,它能够生成具有像素级精确度的逼真图像内容。该模型采用级联像素空间扩散模型,并通过新颖的拉普拉斯扩散过程进行训练,该过程能够在不同频率带以不同的速率衰减图像信号。Edify Image支持多种应用,包括文本到图像合成、4K上采样、ControlNets、360° HDR全景图生成和图像定制微调。它代表了图像生成技术的最新进展,具有广泛的应用前景和重要的商业价值。
基于文本提示修订图像的大型扩散模型
SeedEdit是Doubao Team推出的大型扩散模型,用于根据任何文本提示修订图像。它通过逐步将图像生成器与强大的图像编辑器对齐,实现了图像重建和图像再生之间的最佳平衡。SeedEdit能够实现高审美/分辨率图像的零样本稳定编辑,并支持图像的连续修订。该技术的重要性在于其能够解决图像编辑问题中成对图像数据稀缺的核心难题,通过将文本到图像(T2I)生成模型视为弱编辑模型,并通过生成带有新提示的新图像来实现“编辑”,然后将其蒸馏并与之对齐到图像条件编辑模型中。
基于文本生成服装图像的AI模型
FLUX.1-dev LoRA Outfit Generator是一个文本到图像的AI模型,能够根据用户详细描述的颜色、图案、合身度、风格、材质和类型来生成服装。该模型使用了H&M Fashion Captions Dataset数据集进行训练,并基于Ostris的AI Toolkit进行开发。它的重要性在于能够辅助设计师快速实现设计想法,加速服装行业的创新和生产流程。
Meta 开发的子十亿参数语言模型,适用于设备端应用。
Meta 开发的自回归语言模型,采用优化架构,适合资源受限设备。优点多,如集成多种技术,支持零样本推理等,价格免费,面向自然语言处理研究人员和开发者。
高效优化的600M参数语言模型,专为设备端应用设计。
MobileLLM-600M是由Meta开发的自回归语言模型,采用了优化的Transformer架构,专为资源受限的设备端应用而设计。该模型集成了SwiGLU激活函数、深度薄架构、嵌入共享和分组查询注意力等关键技术。MobileLLM-600M在零样本常识推理任务上取得了显著的性能提升,与之前的125M/350M SoTA模型相比,分别提高了2.7%/4.3%的准确率。该模型的设计理念可扩展至更大模型,如MobileLLM-1B/1.5B,均取得了SoTA结果。
训练无关的区域提示扩散变换器模型
Regional-Prompting-FLUX是一种训练无关的区域提示扩散变换器模型,它能够在无需训练的情况下,为扩散变换器(如FLUX)提供细粒度的组合文本到图像生成能力。该模型不仅效果显著,而且与LoRA和ControlNet高度兼容,能够在保持高速度的同时减少GPU内存的使用。
高效优化的子十亿参数语言模型,专为设备端应用设计
MobileLLM-350M是由Meta开发的自回归语言模型,采用优化的Transformer架构,专为设备端应用设计,以满足资源受限的环境。该模型整合了SwiGLU激活函数、深层薄架构、嵌入共享和分组查询注意力等关键技术,实现了在零样本常识推理任务上的显著准确率提升。MobileLLM-350M在保持较小模型尺寸的同时,提供了与更大模型相媲美的性能,是设备端自然语言处理应用的理想选择。
基于Transformer的实时开放世界AI模型
Oasis是由Decart AI开发的首个可玩、实时、开放世界的AI模型,它是一个互动视频游戏,由Transformer端到端生成,基于逐帧生成。Oasis能够接收用户键盘和鼠标输入,实时生成游戏玩法,内部模拟物理、游戏规则和图形。该模型通过直接观察游戏玩法学习,允许用户移动、跳跃、拾取物品、破坏方块等。Oasis被视为研究更复杂交互世界的基础模型的第一步,未来可能取代传统的游戏引擎。Oasis的实现需要模型架构的改进和模型推理技术的突破,以实现用户与模型的实时交互。Decart AI采用了最新的扩散训练和Transformer模型方法,并结合了大型语言模型(LLMs)来训练一个自回归模型,该模型可以根据用户即时动作生成视频。此外,Decart AI还开发了专有的推理框架,以提供NVIDIA H100 Tensor Core GPU的峰值利用率,并支持Etched即将推出的Sohu芯片。
基于人工智能的图像生成模型
Stable Diffusion 3.5 Medium 是由 Stability AI 提供的一款基于人工智能的图像生成模型,它能够根据文本描述生成高质量的图像。这项技术的重要性在于它能够极大地推动创意产业的发展,如游戏设计、广告、艺术创作等领域。Stable Diffusion 3.5 Medium 以其高效的图像生成能力、易用性和较低的资源消耗而受到用户的青睐。目前,该模型在 Hugging Face 平台上以免费试用的形式提供给用户。
基于文本生成图像的多模态扩散变换器模型
Stable Diffusion 3.5 Medium是一个基于文本到图像的生成模型,由Stability AI开发,具有改进的图像质量、排版、复杂提示理解和资源效率。该模型使用了三个固定的预训练文本编码器,通过QK-规范化提高训练稳定性,并在前12个变换层中引入双注意力块。它在多分辨率图像生成、一致性和各种文本到图像任务的适应性方面表现出色。
8B参数变分自编码器模型,用于高效的文本到图像生成。
Flux.1 Lite是一个由Freepik发布的8B参数的文本到图像生成模型,它是从FLUX.1-dev模型中提取出来的。这个版本相较于原始模型减少了7GB的RAM使用,并提高了23%的运行速度,同时保持了与原始模型相同的精度(bfloat16)。该模型的发布旨在使高质量的AI模型更加易于获取,特别是对于消费级GPU用户。
高效能的文本到图像生成模型
Stable Diffusion 3.5 Large Turbo 是一个基于文本生成图像的多模态扩散变换器(MMDiT)模型,采用了对抗性扩散蒸馏(ADD)技术,提高了图像质量、排版、复杂提示理解和资源效率,特别注重减少推理步骤。该模型在生成图像方面表现出色,能够理解和生成复杂的文本提示,适用于多种图像生成场景。它在Hugging Face平台上发布,遵循Stability Community License,适合研究、非商业用途以及年收入少于100万美元的组织或个人免费使用。
高性能的文本到图像生成模型
Stable Diffusion 3.5 Large 是一个基于文本生成图像的多模态扩散变换器(MMDiT)模型,由 Stability AI 开发。该模型在图像质量、排版、复杂提示理解和资源效率方面都有显著提升。它使用三个固定的预训练文本编码器,并通过 QK 归一化技术提高训练稳定性。此外,该模型在训练数据和策略上使用了包括合成数据和过滤后的公开可用数据。Stable Diffusion 3.5 Large 模型在遵守社区许可协议的前提下,可以免费用于研究、非商业用途,以及年收入少于100万美元的组织或个人的商业用途。
轻量级推理模型,用于生成高质量图像
Stable Diffusion 3.5是一个用于简单推理的轻量级模型,它包含了文本编码器、VAE解码器和核心MM-DiT技术。该模型旨在帮助合作伙伴组织实现SD3.5,并且可以用于生成高质量的图像。它的重要性在于其高效的推理能力和对资源的低要求,使得广泛的用户群体能够使用和享受生成图像的乐趣。该模型遵循Stability AI Community License Agreement,并且可以免费使用。
基于文本生成高质量图像的AI模型
SD3.5-LoRA-Linear-Red-Light是一个基于文本到图像生成的AI模型,通过使用LoRA(Low-Rank Adaptation)技术,该模型能够根据用户提供的文本提示生成高质量的图像。这种技术的重要性在于它能够以较低的计算成本实现模型的微调,同时保持生成图像的多样性和质量。该模型基于Stable Diffusion 3.5 Large模型,并在此基础上进行了优化和调整,以适应特定的图像生成需求。
基于FLUX.1-dev的文本到图像生成模型
FLUX.1-dev-LoRA-Text-Poster是由Shakker-Labs开发的文本到图像生成模型,专门用于艺术文本海报的生成。该模型利用LoRA技术,通过文本提示来生成图像,为用户提供了一种创新的方式来创作艺术作品。模型的训练由版权用户cooooool完成,并在Hugging Face平台上共享,以促进社区的交流和发展。模型遵循非商业用途的flux-1-dev许可协议。
文本到图像生成的自适应工作流
ComfyGen 是一个专注于文本到图像生成的自适应工作流系统,它通过学习用户提示来自动化并定制有效的工作流。这项技术的出现,标志着从使用单一模型到结合多个专业组件的复杂工作流的转变,旨在提高图像生成的质量。ComfyGen 背后的主要优点是能够根据用户的文本提示自动调整工作流,以生成更高质量的图像,这对于需要生成特定风格或主题图像的用户来说非常重要。
生成融合宫崎骏风格和新海诚氛围的梦幻风景图
Flux Ghibsky Illustration 是一个基于文本生成图像的模型,它结合了宫崎骏动画工作室的奇幻细节和新海诚作品中的宁静天空,创造出迷人的场景。该模型特别适合创造梦幻般的视觉效果,用户可以通过特定的触发词来生成具有独特审美的图像。它是基于Hugging Face平台的开源项目,允许用户下载模型并在Replicate上运行。
AI动漫生成器,将文本或照片转换成动漫风格。
Easy Anime Maker是一个基于人工智能的动漫生成器,它使用深度学习技术,如生成对抗网络,将用户输入的文本描述或上传的照片转换成动漫风格的艺术作品。这项技术的重要性在于它降低了创作动漫艺术的门槛,使得没有专业绘画技能的用户也能创造出个性化的动漫图像。产品背景信息显示,它是一个在线平台,用户可以通过简单的文本提示或上传照片来生成动漫艺术,非常适合动漫爱好者和需要快速生成动漫风格图像的专业人士。产品提供免费试用,用户注册后可以获得5个免费积分,如果需要更多生成需求,可以选择购买积分,无需订阅。
基于FLUX.1-dev模型的8步蒸馏Lora,用于文本到图像生成。
FLUX.1-Turbo-Alpha是一个基于FLUX.1-dev模型的8步蒸馏Lora,由AlimamaCreative Team发布。该模型使用多头鉴别器来提高蒸馏质量,可以用于文本到图像(T2I)、修复控制网络等FLUX相关模型。推荐使用指导比例为3.5,Lora比例为1。该模型在1M开源和内部源图像上进行训练,采用对抗性训练提高质量,固定原始FLUX.1-dev变换器作为鉴别器主干,并在每层变换器上添加多头。
一键式创意图像生成模型
FLUX.1-dev-LoRA-One-Click-Creative-Template 是一个基于 LoRA 训练的图像生成模型,由 Shakker-Labs 提供。该模型专注于创意照片生成,能够将用户的文本提示转化为具有创意性的图像。模型使用了先进的文本到图像的生成技术,特别适合需要快速生成高质量图像的用户。它是基于 Hugging Face 平台,可以方便地进行部署和使用。模型的非商业使用是免费的,但商业使用需要遵守相应的许可协议。
高级AI图像生成工具,将文本提示转化为专业级图像
Flux 1.1 Pro AI是一个基于人工智能的高级图像生成平台,它利用尖端的AI技术将用户的文本提示转化为高质量的视觉效果。该平台在图像生成速度上提高了6倍,图像质量显著改善,并增强了对提示的遵从性。Flux 1.1 Pro AI不仅适用于艺术家和设计师,还适用于内容创作者、营销人员等专业人士,帮助他们在各自的领域中实现视觉想法,提升创作效率和质量。
小型语言模型调研、测量与洞察
SLM_Survey是一个专注于小型语言模型(SLMs)的研究项目,旨在通过调研和测量,提供对这些模型的深入了解和技术评估。该项目涵盖了基于Transformer的、仅解码器的语言模型,参数范围在100M至5B之间。通过对59个最先进的开源SLMs进行调研,分析了它们的技术创新,并在多个领域评估了它们的能力,包括常识推理、上下文学习、数学和编程。此外,还对它们的运行时成本进行了基准测试,包括推理延迟和内存占用。这些研究对于推动SLMs领域的研究具有重要价值。
全能的创造者和编辑器,通过扩散变换遵循指令
ACE是一个基于扩散变换的全能创造者和编辑器,它能够通过统一的条件格式Long-context Condition Unit (LCU)输入,实现多种视觉生成任务的联合训练。ACE通过高效的数据收集方法解决了训练数据缺乏的问题,并通过多模态大型语言模型生成准确的文本指令。ACE在视觉生成领域具有显著的性能优势,可以轻松构建响应任何图像创建请求的聊天系统,避免了视觉代理通常采用的繁琐流程。
最先进的图像生成模型
FLUX1.1 [pro] 是 Black Forest Labs 发布的最新图像生成模型,它在速度和图像质量上都有显著提升。该模型提供六倍于前代的速度,同时改善了图像质量、提示遵循度和多样性。FLUX1.1 [pro] 还提供了更高级的定制化选项,以及更优的性价比,适合需要高效、高质量图像生成的开发者和企业。
© 2024 AIbase 备案号:闽ICP备08105208号-14