需求人群:
"目标受众为图像生成领域的研究者、开发者和爱好者,他们需要一个可以自由微调的模型来生成高质量的图像内容。"
使用场景示例:
用于生成艺术作品的图像
在游戏设计中生成游戏元素的图像
用于教育目的,展示图像生成技术
产品特色:
支持文本到图像的生成
使用经典条件生成(CFG)
需要特定的pipeline进行操作
模型已经进行了微调,去除了蒸馏过程
可以被进一步微调以适应特定需求
提供了下载和API接口
模型下载量高,社区活跃
使用教程:
1. 访问Hugging Face网站并找到OpenFLUX.1模型。
2. 下载模型文件或使用Inference API进行图像生成。
3. 如果需要微调模型,准备相应的文本提示和计算资源。
4. 使用提供的pipeline脚本open_flux_pipeline.py进行图像生成。
5. 调整CFG值以获得最佳生成效果,推荐值3.5。
6. 根据需要微调模型参数,以适应特定的图像生成任务。
7. 利用生成的图像进行进一步的应用开发或研究。
浏览量:26
最新流量情况
月访问量
19075.32k
平均访问时长
00:05:32
每次访问页数
5.52
跳出率
45.07%
流量来源
直接访问
48.31%
自然搜索
36.36%
邮件
0.03%
外链引荐
12.17%
社交媒体
3.11%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.13%
印度
7.59%
日本
3.67%
俄罗斯
6.13%
美国
18.18%
开源的文本到图像生成模型
OpenFLUX.1是一个基于FLUX.1-schnell模型的微调版本,移除了蒸馏过程,使其可以进行微调,并且拥有开源、宽松的许可证Apache 2.0。该模型能够生成令人惊叹的图像,并且只需1-4步即可完成。它是一个尝试去除蒸馏过程,创建一个可以微调的开源许可模型。
轻量级推理模型,用于生成高质量图像
Stable Diffusion 3.5是一个用于简单推理的轻量级模型,它包含了文本编码器、VAE解码器和核心MM-DiT技术。该模型旨在帮助合作伙伴组织实现SD3.5,并且可以用于生成高质量的图像。它的重要性在于其高效的推理能力和对资源的低要求,使得广泛的用户群体能够使用和享受生成图像的乐趣。该模型遵循Stability AI Community License Agreement,并且可以免费使用。
一种先进的文本到图像的生成模型。
FLUX.1-dev-Controlnet-Union-alpha是一个文本到图像的生成模型,属于Diffusers系列,使用ControlNet技术进行控制。目前发布的是alpha版本,尚未完全训练完成,但已经展示了其代码的有效性。该模型旨在通过开源社区的快速成长,推动Flux生态系统的发展。尽管完全训练的Union模型可能在特定领域如姿势控制上不如专业模型,但随着训练的进展,其性能将不断提升。
开源的基于流的文本到图像生成模型
AuraFlow v0.1是一个完全开源的、基于流的文本到图像生成模型,它在GenEval上达到了最先进的结果。目前模型处于beta阶段,正在不断改进中,社区反馈至关重要。感谢两位工程师@cloneofsimo和@isidentical将此项目变为现实,以及为该项目奠定基础的研究人员。
基于潜在扩散模型的大规模文本到图像生成模型
Kolors是由快手Kolors团队开发的大规模文本到图像生成模型,基于潜在扩散模型,训练于数十亿文本-图像对。它在视觉质量、复杂语义准确性以及中英文文本渲染方面,均优于开源和闭源模型。Kolors支持中英文输入,尤其在理解及生成中文特定内容方面表现突出。
开源视觉-语言-动作模型,推动机器人操作技术发展。
OpenVLA是一个具有7亿参数的开源视觉-语言-动作(VLA)模型,通过在Open X-Embodiment数据集上的970k机器人剧集进行预训练。该模型在通用机器人操作策略上设定了新的行业标准,支持开箱即用控制多个机器人,并且可以通过参数高效的微调快速适应新的机器人设置。OpenVLA的检查点和PyTorch训练流程完全开源,模型可以从HuggingFace下载并进行微调。
开源大型语言模型的托管、部署、构建和微调一站式解决方案。
AIKit 是一个开源工具,旨在简化大型语言模型(LLMs)的托管、部署、构建和微调过程。它提供了与OpenAI API兼容的REST API,支持多种推理能力和格式,使用户可以使用任何兼容的客户端发送请求。此外,AIKit 还提供了一个可扩展的微调接口,支持Unsloth,为用户提供快速、内存高效且易于使用的微调体验。
基于Linux环境快速部署开源大模型的教程
该项目是一个围绕开源大模型的全流程指导教程,包括环境配置、模型部署、高效微调等,简化开源大模型的使用和应用,让更多普通学习者能够使用开源大模型。项目面向对开源大模型感兴趣且想自主上手的学习者,提供详细的环境配置、模型部署和微调方法。
OFT可有效稳定微调文本到图像扩散模型
Controlling Text-to-Image Diffusion研究了如何有效引导或控制强大的文本到图像生成模型进行各种下游任务。提出了正交微调(OFT)方法,可以保持模型的生成能力。OFT可以保持神经元之间的超球面能量不变,防止模型坍塌。作者考虑了两种重要的微调任务:主体驱动生成和可控生成。结果表明,OFT方法在生成质量和收敛速度上优于现有方法。
统一的开放命名实体和语音识别模型
WhisperNER是一个结合了自动语音识别(ASR)和命名实体识别(NER)的统一模型,具备零样本能力。该模型旨在作为ASR带NER的下游任务的强大基础模型,并可以在特定数据集上进行微调以提高性能。WhisperNER的重要性在于其能够同时处理语音识别和实体识别任务,提高了处理效率和准确性,尤其在多语言和跨领域的场景中具有显著优势。
为数据中心打造的高效AI推理平台
d-Matrix是一家专注于AI推理技术的公司,其旗舰产品Corsair™是为数据中心设计的AI推理平台,能够提供极高的推理速度和极低的延迟。d-Matrix通过硬件软件协同设计,优化了Generative AI推理性能,推动了AI技术在数据中心的应用,使得大规模AI推理变得更加高效和可持续。
释放超级推理能力,提升AIME & MATH基准测试性能。
DeepSeek-R1-Lite-Preview是一款专注于提升推理能力的AI模型,它在AIME和MATH基准测试中展现了出色的性能。该模型具备实时透明的思考过程,并且计划推出开源模型和API。DeepSeek-R1-Lite-Preview的推理能力随着思考长度的增加而稳步提升,显示出更好的性能。产品背景信息显示,DeepSeek-R1-Lite-Preview是DeepSeek公司推出的最新产品,旨在通过人工智能技术提升用户的工作效率和问题解决能力。目前,产品提供免费试用,具体的定价和定位信息尚未公布。
下一代Python笔记本
marimo是一个开源的Python反应式笔记本,它具有可复现性、对git友好、可以作为脚本执行,并且可以作为应用程序分享。它通过自动运行受影响的单元格来响应单元格的更改,消除了管理笔记本状态的繁琐工作。marimo的UI元素如数据框架GUI和图表,使得数据处理变得快速、未来感和直观。marimo笔记本以.py文件存储,可以与git版本控制一起使用,可以作为Python脚本运行,也可以导入符号到其他笔记本或Python文件中,并使用你喜欢的工具进行lint或格式化。所有这些都在现代的 AI 支持的编辑器中进行。
Qwen2.5-Coder系列的1.5B参数指令调优模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专为代码生成、代码推理和代码修复而设计。基于强大的Qwen2.5,通过增加训练令牌至5.5万亿,包括源代码、文本代码基础、合成数据等,Qwen2.5-Coder-32B已成为当前最先进的开源代码大型语言模型,其编码能力与GPT-4o相匹配。此模型是1.5B参数的指令调优版本,采用GGUF格式,具有因果语言模型、预训练和后训练阶段、transformers架构等特点。
数据驱动的框架,增强大型语言模型的工作流编排能力
WorkflowLLM是一个以数据为中心的框架,旨在增强大型语言模型(LLMs)在工作流编排方面的能力。核心是WorkflowBench,这是一个大规模的监督式微调数据集,包含来自83个应用、28个类别的1503个API的106763个样本。WorkflowLLM通过微调Llama-3.1-8B模型,创建了专门针对工作流编排任务优化的WorkflowLlama模型。实验结果表明,WorkflowLlama在编排复杂工作流方面表现出色,并且能够很好地泛化到未见过的API。
开源的GenAI应用网关,快速构建个性化的AI应用
Arch是一个开源的网关,专为处理提示(prompts)而设计,它利用快速的大型语言模型(LLMs)来处理提示,并与后端系统无缝集成。Arch基于Envoy构建,支持任何应用程序语言,并提供快速部署和透明升级。它提供了包括流量管理、前端/边缘网关、监控和端到端追踪在内的多种功能,帮助开发者构建快速、健壮和个性化的GenAI应用。
AI模型部署和推理优化的专家
Neural Magic是一家专注于AI模型优化和部署的公司,提供领先的企业级推理解决方案,以最大化性能和提高硬件效率。公司的产品支持在GPU和CPU基础设施上运行领先的开源大型语言模型(LLMs),帮助企业在云、私有数据中心或边缘环境中安全、高效地部署AI模型。Neural Magic的产品背景信息强调了其在机器学习模型优化方面的专业知识,以及与科研机构合作开发的创新LLM压缩技术,如GPTQ和SparseGPT。产品价格和定位方面,Neural Magic提供了免费试用和付费服务,旨在帮助企业降低成本、提高效率,并保持数据隐私和安全。
免费 npm 库,用 Llama 3.2 Vision 进行 OCR,输出 markdown 文本
开源 npm 库,免费使用 Llama 3.2 Vision 进行 OCR,支持本地和远程图像,计划支持 PDF,受 Zerox 启发,有免费和付费接口
人脸匿名化技术,保留关键细节同时有效保护隐私。
face_anon_simple是一个人脸匿名化技术,旨在通过先进的算法在保护个人隐私的同时保留原始照片中的面部表情、头部姿势、眼神方向和背景元素。这项技术对于需要发布包含人脸的图片但又希望保护个人隐私的场合非常有用,比如在新闻报道、社交媒体和安全监控等领域。产品基于开源代码,允许用户自行部署和使用,具有很高的灵活性和应用价值。
Qwen2.5-Coder系列中的3B参数模型,专注于代码生成与理解。
Qwen2.5-Coder-3B是Qwen2.5-Coder系列中的一个大型语言模型,专注于代码生成、推理和修复。基于强大的Qwen2.5,该模型通过增加训练令牌至5.5万亿,包括源代码、文本代码基础、合成数据等,实现了在代码生成、推理和修复方面的显著改进。Qwen2.5-Coder-32B已成为当前最先进的开源代码大型语言模型,其编码能力与GPT-4o相匹配。此外,Qwen2.5-Coder-3B还为现实世界的应用提供了更全面的基础,如代码代理,不仅增强了编码能力,还保持了在数学和通用能力方面的优势。
Qwen2.5-Coder系列中的7B参数代码生成模型
Qwen2.5-Coder-7B是基于Qwen2.5的大型语言模型,专注于代码生成、代码推理和代码修复。它在5.5万亿的训练令牌上进行了扩展,包括源代码、文本代码接地、合成数据等,是目前开源代码语言模型的最新进展。该模型不仅在编程能力上与GPT-4o相匹配,还保持了在数学和一般能力上的优势,并支持长达128K令牌的长上下文。
大型多模态模型,集成表格数据
TableGPT2是一个大型多模态模型,专门针对表格数据进行预训练和微调,以解决实际应用中表格数据整合不足的问题。该模型在超过593.8K的表格和2.36M的高质量查询-表格-输出元组上进行了预训练和微调,规模前所未有。TableGPT2的关键创新之一是其新颖的表格编码器,专门设计用于捕获模式级别和单元格级别的信息,增强了模型处理模糊查询、缺失列名和不规则表格的能力。在23个基准测试指标上,TableGPT2在7B模型上平均性能提升了35.20%,在72B模型上提升了49.32%,同时保持了强大的通用语言和编码能力。
利用像素空间拉普拉斯扩散模型生成高质量图像
Edify Image是NVIDIA推出的一款图像生成模型,它能够生成具有像素级精确度的逼真图像内容。该模型采用级联像素空间扩散模型,并通过新颖的拉普拉斯扩散过程进行训练,该过程能够在不同频率带以不同的速率衰减图像信号。Edify Image支持多种应用,包括文本到图像合成、4K上采样、ControlNets、360° HDR全景图生成和图像定制微调。它代表了图像生成技术的最新进展,具有广泛的应用前景和重要的商业价值。
Qwen2.5-Coder系列中的14B参数代码生成模型
Qwen2.5-Coder-14B-Instruct是Qwen2.5-Coder系列中的一个大型语言模型,专注于代码生成、代码推理和代码修复。基于强大的Qwen2.5,该模型通过扩展训练令牌到5.5万亿,包括源代码、文本代码接地、合成数据等,成为当前开源代码LLM的最新技术。它不仅增强了编码能力,还保持了在数学和通用能力方面的优势,并支持长达128K令牌的长上下文。
开源代码生成大型语言模型
Qwen2.5-Coder是一系列专为代码生成设计的Qwen大型语言模型,包含0.5、1.5、3、7、14、32亿参数的六种主流模型尺寸,以满足不同开发者的需求。该模型在代码生成、代码推理和代码修复方面有显著提升,基于强大的Qwen2.5,训练令牌扩展到5.5万亿,包括源代码、文本代码基础、合成数据等。Qwen2.5-Coder-32B是目前最先进的开源代码生成大型语言模型,其编码能力与GPT-4o相匹配。它不仅增强了编码能力,还保持了在数学和通用能力方面的优势,并支持长达128K令牌的长上下文。
专为软件改进设计的开源大型语言模型。
Lingma SWE-GPT是一个开源的大型语言模型,专注于软件工程领域的任务,旨在提供智能化的开发支持。该模型基于Qwen系列基础模型,经过额外训练以增强其在复杂软件工程任务中的能力。它在软件工程智能代理的权威排行榜上表现出色,适合需要自动化软件改进的开发团队和研究人员。
开源AI开发者助手,提升开发效率。
OpenHands是由All Hands AI开发的开源AI软件工程师,旨在帮助开发者处理积压的工作,让他们能够专注于解决难题、创造性挑战和过度工程化他们的配置文件。该产品在SWE-bench验证问题集中解决了超过一半的问题,是首个得分超过50%的AI工程师。此外,来自十几个学术机构的顶级代码生成研究人员每天都在帮助改进它。OpenHands在GitHub上以MIT许可证开源,拥有35k星标和190+贡献者。它与AI安全专家如Invariant Labs合作,以平衡创新与安全。
人类中心语言模型和模拟器的领导者
Nous Research专注于开发以人为中心的语言模型和模拟器,致力于将AI系统与现实世界用户体验对齐。我们的主要研究领域包括模型架构、数据合成、微调和推理。我们优先开发开源、人类兼容的模型,挑战传统的封闭模型方法。
© 2024 AIbase 备案号:闽ICP备08105208号-14