需求人群:
"AuraFlow适用于需要生成高质量图像的设计师、艺术家和研究人员。无论是进行艺术创作还是科学研究,用户都可以通过简单的文本提示来生成所需的图像,极大地提高了图像创作的效率和多样性。"
使用场景示例:
设计师使用AuraFlow根据文本描述生成产品宣传图
艺术家利用AuraFlow创作具有特定主题的视觉艺术作品
研究人员使用AuraFlow生成数据集进行图像识别算法训练
产品特色:
基于文本描述生成高分辨率图像
支持在特定硬件上运行,如CUDA
提供多种参数设置以调整生成图像的细节
使用torch.Generator进行随机性控制
支持高保真度和超现实感的图像生成
模型仍在开发中,持续集成社区反馈进行优化
使用教程:
安装必要的依赖库,如diffusers和torch
从预训练模型库中加载AuraFlowPipeline
设置生成图像的参数,如尺寸、推理步骤数等
定义文本提示,描述希望生成的图像内容
调用pipeline生成图像,并获取结果
浏览量:169
最新流量情况
月访问量
26103.68k
平均访问时长
00:04:43
每次访问页数
5.49
跳出率
43.69%
流量来源
直接访问
48.80%
自然搜索
35.36%
邮件
0.03%
外链引荐
12.91%
社交媒体
2.88%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
16.85%
印度
7.96%
日本
3.46%
俄罗斯
5.47%
美国
16.98%
开源的基于流的文本到图像生成模型
AuraFlow v0.1是一个完全开源的、基于流的文本到图像生成模型,它在GenEval上达到了最先进的结果。目前模型处于beta阶段,正在不断改进中,社区反馈至关重要。感谢两位工程师@cloneofsimo和@isidentical将此项目变为现实,以及为该项目奠定基础的研究人员。
基于文本生成图像的多模态扩散变换器模型
Stable Diffusion 3.5 Medium是一个基于文本到图像的生成模型,由Stability AI开发,具有改进的图像质量、排版、复杂提示理解和资源效率。该模型使用了三个固定的预训练文本编码器,通过QK-规范化提高训练稳定性,并在前12个变换层中引入双注意力块。它在多分辨率图像生成、一致性和各种文本到图像任务的适应性方面表现出色。
高效能的文本到图像生成模型
Stable Diffusion 3.5 Large Turbo 是一个基于文本生成图像的多模态扩散变换器(MMDiT)模型,采用了对抗性扩散蒸馏(ADD)技术,提高了图像质量、排版、复杂提示理解和资源效率,特别注重减少推理步骤。该模型在生成图像方面表现出色,能够理解和生成复杂的文本提示,适用于多种图像生成场景。它在Hugging Face平台上发布,遵循Stability Community License,适合研究、非商业用途以及年收入少于100万美元的组织或个人免费使用。
轻量级推理模型,用于生成高质量图像
Stable Diffusion 3.5是一个用于简单推理的轻量级模型,它包含了文本编码器、VAE解码器和核心MM-DiT技术。该模型旨在帮助合作伙伴组织实现SD3.5,并且可以用于生成高质量的图像。它的重要性在于其高效的推理能力和对资源的低要求,使得广泛的用户群体能够使用和享受生成图像的乐趣。该模型遵循Stability AI Community License Agreement,并且可以免费使用。
一种先进的文本到图像的生成模型。
FLUX.1-dev-Controlnet-Union-alpha是一个文本到图像的生成模型,属于Diffusers系列,使用ControlNet技术进行控制。目前发布的是alpha版本,尚未完全训练完成,但已经展示了其代码的有效性。该模型旨在通过开源社区的快速成长,推动Flux生态系统的发展。尽管完全训练的Union模型可能在特定领域如姿势控制上不如专业模型,但随着训练的进展,其性能将不断提升。
基于潜在扩散模型的大规模文本到图像生成模型
Kolors是由快手Kolors团队开发的大规模文本到图像生成模型,基于潜在扩散模型,训练于数十亿文本-图像对。它在视觉质量、复杂语义准确性以及中英文文本渲染方面,均优于开源和闭源模型。Kolors支持中英文输入,尤其在理解及生成中文特定内容方面表现突出。
Janus-Pro-1B 是一个统一多模态理解和生成的自回归框架。
Janus-Pro-1B 是一个创新的多模态模型,专注于统一多模态理解和生成。它通过分离视觉编码路径,解决了传统方法在理解和生成任务中的冲突问题,同时保持了单个统一的 Transformer 架构。这种设计不仅提高了模型的灵活性,还使其在多模态任务中表现出色,甚至超越了特定任务的模型。该模型基于 DeepSeek-LLM-1.5b-base/DeepSeek-LLM-7b-base 构建,使用 SigLIP-L 作为视觉编码器,支持 384x384 的图像输入,并采用特定的图像生成 tokenizer。其开源性和灵活性使其成为下一代多模态模型的有力候选。
基于Diffusion的文本到图像生成模型,专注于时尚模特摄影风格图像生成
Fashion-Hut-Modeling-LoRA是一个基于Diffusion技术的文本到图像生成模型,主要用于生成时尚模特的高质量图像。该模型通过特定的训练参数和数据集,能够根据文本提示生成具有特定风格和细节的时尚摄影图像。它在时尚设计、广告制作等领域具有重要应用价值,能够帮助设计师和广告商快速生成创意概念图。模型目前仍在训练阶段,可能存在一些生成效果不佳的情况,但已经展示了强大的潜力。该模型的训练数据集包含14张高分辨率图像,使用了AdamW优化器和constant学习率调度器等参数,训练过程注重图像的细节和质量。
一个基于文本生成图像的预训练模型,具有80亿参数和Apache 2.0开源许可。
Flex.1-alpha 是一个强大的文本到图像生成模型,基于80亿参数的修正流变换器架构。它继承了FLUX.1-schnell的特性,并通过训练指导嵌入器,使其无需CFG即可生成图像。该模型支持微调,并且具有开放源代码许可(Apache 2.0),适合在多种推理引擎中使用,如Diffusers和ComfyUI。其主要优点包括高效生成高质量图像、灵活的微调能力和开源社区支持。开发背景是为了解决图像生成模型的压缩和优化问题,并通过持续训练提升模型性能。
文本到图像扩散模型的美学质量提升工具
VMix是一种用于提升文本到图像扩散模型美学质量的技术,通过创新的条件控制方法——价值混合交叉注意力,系统性地增强图像的美学表现。VMix作为一个即插即用的美学适配器,能够在保持视觉概念通用性的同时提升生成图像的质量。VMix的关键洞见是通过设计一种优越的条件控制方法来增强现有扩散模型的美学表现,同时保持图像与文本的对齐。VMix足够灵活,可以应用于社区模型,以实现更好的视觉性能,无需重新训练。
无需训练的迭代框架,用于长篇故事可视化
Story-Adapter是一个无需训练的迭代框架,专为长篇故事可视化设计。它通过迭代范式和全局参考交叉注意力模块,优化图像生成过程,保持故事中语义的连贯性,同时减少计算成本。该技术的重要性在于它能够在长篇故事中生成高质量、细节丰富的图像,解决了传统文本到图像模型在长故事可视化中的挑战,如语义一致性和计算可行性。
基于文本生成图像的AI模型
fofr/flux-condensation是一个基于文本生成图像的AI模型,使用Diffusers库和LoRAs技术,能够根据用户提供的文本提示生成相应的图像。该模型在Replicate上训练,具有非商业性质的flux-1-dev许可证。它代表了文本到图像生成技术的最新进展,能够为设计师、艺术家和内容创作者提供强大的视觉表现工具。
高效率、高分辨率的文本到图像生成框架
Sana是一个由NVIDIA开发的文本到图像的生成框架,能够高效生成高达4096×4096分辨率的图像。Sana以其快速的速度和强大的文本图像对齐能力,可以在笔记本电脑GPU上部署,代表了图像生成技术的一个重要进步。该模型基于线性扩散变换器,使用预训练的文本编码器和空间压缩的潜在特征编码器,能够根据文本提示生成和修改图像。Sana的开源代码可在GitHub上找到,其研究和应用前景广阔,尤其在艺术创作、教育工具和模型研究等方面。
高分辨率、高效率的文本到图像生成框架
Sana是一个由NVIDIA开发的文本到图像生成框架,能够高效生成高达4096×4096分辨率的图像。Sana以其快速的速度和强大的文本图像对齐能力,使得在笔记本电脑GPU上也能部署。它是一个基于线性扩散变换器(text-to-image generative model)的模型,拥有1648M参数,专门用于生成1024px基础的多尺度高宽图像。Sana模型的主要优点包括高分辨率图像生成、快速的合成速度以及强大的文本图像对齐能力。Sana模型的背景信息显示,它是基于开源代码开发的,可以在GitHub上找到源代码,同时它也遵循特定的许可证(CC BY-NC-SA 4.0 License)。
手訫风格的铅笔素描生成模型
shou_xin是一个基于文本到图像的生成模型,它能够根据用户提供的文本提示生成具有手訫风格的铅笔素描图像。这个模型使用了diffusers库和lora技术,以实现高质量的图像生成。shou_xin模型以其独特的艺术风格和高效的图像生成能力在图像生成领域占有一席之地,特别适合需要快速生成具有特定艺术风格的图像的用户。
探索AI前沿,精选国内外AI产品与应用。
智趣AI甄选是一个专注于人工智能领域的综合性平台,旨在洞察行业发展前景,精选并展示国内外的AI产品与应用。平台提供丰富的学习资源,行业融合案例分析,助力用户洞悉AI发展趋势,与AI技术同行,共创未来。
高分辨率、高效率的文本到图像生成框架
Sana是一个由NVIDIA开发的文本到图像生成框架,能够高效生成高达4096×4096分辨率的高清晰度、高文本-图像一致性的图像,并且速度极快,可以在笔记本电脑GPU上部署。Sana模型基于线性扩散变换器,使用预训练的文本编码器和空间压缩的潜在特征编码器。该技术的重要性在于其能够快速生成高质量的图像,对于艺术创作、设计和其他创意领域具有革命性的影响。Sana模型遵循CC BY-NC-SA 4.0许可协议,源代码可在GitHub上找到。
高分辨率、高效率的文本到图像生成框架
Sana是一个由NVIDIA开发的文本到图像的生成框架,能够高效生成高达4096×4096分辨率的图像。Sana以其快速的速度、强大的文本图像对齐能力以及可在笔记本电脑GPU上部署的特性而著称。该模型基于线性扩散变换器,使用预训练的文本编码器和空间压缩的潜在特征编码器,代表了文本到图像生成技术的最新进展。Sana的主要优点包括高分辨率图像生成、快速合成、笔记本电脑GPU上的可部署性,以及开源的代码,使其在研究和实际应用中具有重要价值。
多视图一致性图像生成的便捷解决方案
MV-Adapter是一种基于适配器的多视图图像生成解决方案,它能够在不改变原有网络结构或特征空间的前提下,增强预训练的文本到图像(T2I)模型及其衍生模型。通过更新更少的参数,MV-Adapter实现了高效的训练并保留了预训练模型中嵌入的先验知识,降低了过拟合风险。该技术通过创新的设计,如复制的自注意力层和并行注意力架构,使得适配器能够继承预训练模型的强大先验,以建模新的3D知识。此外,MV-Adapter还提供了统一的条件编码器,无缝整合相机参数和几何信息,支持基于文本和图像的3D生成以及纹理映射等应用。MV-Adapter在Stable Diffusion XL(SDXL)上实现了768分辨率的多视图生成,并展示了其适应性和多功能性,能够扩展到任意视图生成,开启更广泛的应用可能性。
高效率的高分辨率图像合成框架
Sana是一个文本到图像的框架,能够高效生成高达4096×4096分辨率的图像。它以极快的速度合成高分辨率、高质量的图像,并保持强大的文本-图像对齐,可以部署在笔记本电脑GPU上。Sana的核心设计包括深度压缩自编码器、线性扩散变换器(DiT)、仅解码器的小型语言模型作为文本编码器,以及高效的训练和采样策略。Sana-0.6B与现代大型扩散模型相比,体积小20倍,测量吞吐量快100倍以上。此外,Sana-0.6B可以部署在16GB笔记本电脑GPU上,生成1024×1024分辨率图像的时间少于1秒。Sana使得低成本的内容创作成为可能。
基于FLUX.1-dev模型的IP-Adapter,实现图像工作如文本般灵活。
FLUX.1-dev-IP-Adapter是一个基于FLUX.1-dev模型的IP-Adapter,由InstantX Team研发。该模型能够将图像工作处理得像文本一样灵活,使得图像生成和编辑更加高效和直观。它支持图像参考,但不适用于细粒度的风格转换或角色一致性。模型在10M开源数据集上训练,使用128的批量大小和80K的训练步骤。该模型在图像生成领域具有创新性,能够提供多样化的图像生成解决方案,但可能存在风格或概念覆盖不足的问题。
先进的文本到图像模型工具套件
FLUX.1 Tools是Black Forest Labs推出的一套模型工具,旨在为基于文本的图像生成模型FLUX.1增加控制和可操作性,使得对真实和生成的图像进行修改和再创造成为可能。该工具套件包含四个不同的特性,以开放访问模型的形式在FLUX.1 [dev]模型系列中提供,并作为BFL API的补充,支持FLUX.1 [pro]。FLUX.1 Tools的主要优点包括先进的图像修复和扩展能力、结构化引导、图像变化和重构等,这些功能对于图像编辑和创作领域具有重要意义。
基于文本提示修订图像的大型扩散模型
SeedEdit是Doubao Team推出的大型扩散模型,用于根据任何文本提示修订图像。它通过逐步将图像生成器与强大的图像编辑器对齐,实现了图像重建和图像再生之间的最佳平衡。SeedEdit能够实现高审美/分辨率图像的零样本稳定编辑,并支持图像的连续修订。该技术的重要性在于其能够解决图像编辑问题中成对图像数据稀缺的核心难题,通过将文本到图像(T2I)生成模型视为弱编辑模型,并通过生成带有新提示的新图像来实现“编辑”,然后将其蒸馏并与之对齐到图像条件编辑模型中。
基于文本生成服装图像的AI模型
FLUX.1-dev LoRA Outfit Generator是一个文本到图像的AI模型,能够根据用户详细描述的颜色、图案、合身度、风格、材质和类型来生成服装。该模型使用了H&M Fashion Captions Dataset数据集进行训练,并基于Ostris的AI Toolkit进行开发。它的重要性在于能够辅助设计师快速实现设计想法,加速服装行业的创新和生产流程。
训练无关的区域提示扩散变换器模型
Regional-Prompting-FLUX是一种训练无关的区域提示扩散变换器模型,它能够在无需训练的情况下,为扩散变换器(如FLUX)提供细粒度的组合文本到图像生成能力。该模型不仅效果显著,而且与LoRA和ControlNet高度兼容,能够在保持高速度的同时减少GPU内存的使用。
基于人工智能的图像生成模型
Stable Diffusion 3.5 Medium 是由 Stability AI 提供的一款基于人工智能的图像生成模型,它能够根据文本描述生成高质量的图像。这项技术的重要性在于它能够极大地推动创意产业的发展,如游戏设计、广告、艺术创作等领域。Stable Diffusion 3.5 Medium 以其高效的图像生成能力、易用性和较低的资源消耗而受到用户的青睐。目前,该模型在 Hugging Face 平台上以免费试用的形式提供给用户。
连续时间一致性模型的简化、稳定与扩展
OpenAI 提出的连续时间一致性模型(sCM)是一种生成模型,它在生成高质量样本时,只需要两个采样步骤,与领先的扩散模型相比,具有显著的速度优势。sCM 通过简化理论公式,稳定并扩展了大规模数据集的训练,使得在保持样本质量的同时,大幅减少了采样时间,为实时应用提供了可能性。
© 2025 AIbase 备案号:闽ICP备08105208号-14