需求人群:
"该模型适合时尚设计师、广告创意人员、摄影师以及对时尚图像生成感兴趣的开发者。对于时尚设计师来说,它可以帮助快速生成服装设计的概念图;对于广告创意人员,可以用于制作广告海报的初稿;对于摄影师,可以作为灵感来源,探索不同的拍摄风格和场景;对于开发者,可以用于研究和开发基于文本到图像生成的应用程序。"
使用场景示例:
生成一张女性模特穿着粉色运动内衣,站在纯白背景上,回头露出严肃表情的图像
生成一张街拍风格的时尚模特图,模特穿着宽松灰色卫衣搭配深橄榄色工装裤,背景为红色背景,突出服装质感
生成一张具有日本超现实主义风格的广告海报,模特穿着现代宽松牛仔裤和上衣,搭配白色运动鞋和金色项链,背景为未来感的城市夜景,樱花飘落
产品特色:
支持文本到图像的生成,可根据文本描述生成对应的时尚模特图像
能够生成具有特定风格和细节的时尚摄影图像,如街拍风格、广告海报风格等
提供多种参数设置,用户可以根据需要调整生成图像的质量和风格
支持在Hugging Face Spaces上部署和使用,方便用户快速体验和应用
提供模型权重下载,用户可以在本地环境中使用该模型进行图像生成
使用教程:
访问Hugging Face网站,打开模型页面:https://huggingface.co/prithivMLmods/Fashion-Hut-Modeling-LoRA
在页面中找到模型的使用示例或代码片段,复制代码到本地Python环境中
安装必要的依赖库,如torch和DiffusionPipeline
根据需要修改代码中的文本提示,以生成符合需求的图像
运行代码,模型将根据文本提示生成对应的图像,并保存到指定路径
浏览量:162
最新流量情况
月访问量
25296.55k
平均访问时长
00:04:45
每次访问页数
5.83
跳出率
43.31%
流量来源
直接访问
48.39%
自然搜索
35.85%
邮件
0.03%
外链引荐
12.76%
社交媒体
2.96%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.77%
印度
8.48%
日本
3.85%
俄罗斯
4.86%
美国
17.58%
基于Diffusion的文本到图像生成模型,专注于时尚模特摄影风格图像生成
Fashion-Hut-Modeling-LoRA是一个基于Diffusion技术的文本到图像生成模型,主要用于生成时尚模特的高质量图像。该模型通过特定的训练参数和数据集,能够根据文本提示生成具有特定风格和细节的时尚摄影图像。它在时尚设计、广告制作等领域具有重要应用价值,能够帮助设计师和广告商快速生成创意概念图。模型目前仍在训练阶段,可能存在一些生成效果不佳的情况,但已经展示了强大的潜力。该模型的训练数据集包含14张高分辨率图像,使用了AdamW优化器和constant学习率调度器等参数,训练过程注重图像的细节和质量。
新一代文本到图像生成AI模型
Stable Diffusion 3是stability公司推出的新一代文本到图像生成AI模型,相比早期版本在多主体提示、图像质量和拼写能力等方面都有了极大提升。该模型采用了diffusion transformer架构和flow matching技术,参数量范围从800M到8B不等,提供了从个人用户到企业客户多种部署方案。主要功能包括:高质量图片生成、支持多主体、拼写错误纠正等。典型应用场景有:数字艺术创作、图片编辑、游戏和电影制作等。相比早期版本,该AI助手具有更强大的理解和创作能力,是新一代安全、开放、普惠的生成式AI典范。
控制文本到图像生成过程
FreeControl是一个无需训练就可以实现对文本到图像生成过程的可控制的方法。它支持对多种条件、架构和检查点的同时控制。FreeControl通过结构指导实现与指导图像的结构对齐,通过外观指导实现使用相同种子的生成图像之间的外观共享。FreeControl包含分析阶段和合成阶段。在分析阶段,FreeControl查询文本到图像模型生成少量种子图像,然后从生成的图像构建线性特征子空间。在合成阶段,FreeControl在子空间中运用指导实现与指导图像的结构对齐,以及使用与不使用控制的生成图像之间的外观对齐。
先进的文本到图像生成系统
Stable Diffusion 3是一款先进的文本到图像生成系统,它在排版和提示遵循方面与DALL-E 3和Midjourney v6等顶尖系统相匹敌或更优。该系统采用新的多模态扩散变换器(MMDiT)架构,使用不同的权重集来改善图像和语言的表示,从而提高文本理解和拼写能力。Stable Diffusion 3 API现已在Stability AI开发者平台上线,与Fireworks AI合作提供快速可靠的API服务,并承诺在不久的将来通过Stability AI会员资格开放模型权重以供自托管。
高性能的文本到图像生成模型
Stable Diffusion 3.5 Large 是一个基于文本生成图像的多模态扩散变换器(MMDiT)模型,由 Stability AI 开发。该模型在图像质量、排版、复杂提示理解和资源效率方面都有显著提升。它使用三个固定的预训练文本编码器,并通过 QK 归一化技术提高训练稳定性。此外,该模型在训练数据和策略上使用了包括合成数据和过滤后的公开可用数据。Stable Diffusion 3.5 Large 模型在遵守社区许可协议的前提下,可以免费用于研究、非商业用途,以及年收入少于100万美元的组织或个人的商业用途。
Stable Diffusion WebUI Forge是基于Stable Diffusion WebUI的图像生成平台
Stable Diffusion WebUI Forge基于Stable Diffusion WebUI和Gradio开发,旨在优化资源管理、加速推理。相比原版WebUI在1024px分辨率下的SDXL推理,Forge可提升30-75%的速度,最大分辨率提升2-3倍,最大batch size提升4-6倍。Forge保持了原版WebUI的所有功能,同时新增了DDPM、DPM++、LCM等采样器,实现了Free U、SVD、Zero123等算法。使用Forge的UNet Patcher,开发者可以用极少的代码实现算法。Forge还优化了控制网络的使用,实现真正的零内存占用调用。
多功能文本到图像扩散模型,生成高质量非真实感图像。
Pony Diffusion V6 XL是一个文本到图像的扩散模型,专门设计用于生成以小马为主题的高质量艺术作品。它在大约80,000张小马图像的数据集上进行了微调,确保生成的图像既相关又美观。该模型采用用户友好的界面,易于使用,并通过CLIP进行美学排名,以提升图像质量。Pony Diffusion在CreativeML OpenRAIL许可证下提供,允许用户自由使用、再分发和修改模型。
灵活的基于 Diffusion 的文本到图像生成模型
伪灵活基础模型(ptx0/pseudo-flex-base)是基于 Diffusion 技术的文本到图像生成模型。它通过将文本描述转换为逼真的图像,提供了灵活的图像生成能力。该模型可以根据给定的文本提示生成与文本描述相符合的图像,具有高度的灵活性和生成效果。该模型还具有稳定的性能和可靠的训练基础,可以广泛应用于人工智能领域的图像生成任务。
基于FLUX.1-dev模型的LoRA文本到图像生成技术。
flux-RealismLora是由XLabs AI团队发布的基于FLUX.1-dev模型的LoRA技术,用于生成逼真的图像。该技术通过文本提示生成图像,支持多种风格,如动画风格、幻想风格和自然电影风格。XLabs AI提供了训练脚本和配置文件,以方便用户进行模型训练和使用。
高效能的文本到图像生成模型
Stable Diffusion 3.5 Large Turbo 是一个基于文本生成图像的多模态扩散变换器(MMDiT)模型,采用了对抗性扩散蒸馏(ADD)技术,提高了图像质量、排版、复杂提示理解和资源效率,特别注重减少推理步骤。该模型在生成图像方面表现出色,能够理解和生成复杂的文本提示,适用于多种图像生成场景。它在Hugging Face平台上发布,遵循Stability Community License,适合研究、非商业用途以及年收入少于100万美元的组织或个人免费使用。
先进的文本到图像AI模型,实现高质量图像生成。
Stable Diffusion 3 Medium是Stability AI迄今为止发布的最先进文本到图像生成模型。它具有2亿参数,提供出色的细节、色彩和光照效果,支持多种风格。模型对长文本和复杂提示的理解能力强,能够生成具有空间推理、构图元素、动作和风格的图像。此外,它还实现了前所未有的文本质量,减少了拼写、字距、字母形成和间距的错误。模型资源效率高,适合在标准消费级GPU上运行,且具备微调能力,可以吸收小数据集中的细微细节,非常适合定制化。
AI文本到图像生成工具
NeutronField是一款AI文本到图像生成工具,通过输入文字描述,即可生成对应的图像。它具有稳定的扩散算法,能够生成高质量的图像作品。NeutronField的主要功能包括根据文本生成图像、展示AI文本到图像的作品、购买和出售AI文本到图像的作品等。它的优势在于能够快速生成多样化的图像作品,满足用户的个性化需求。NeutronField的定价根据作品的复杂程度和独特性而定,用户可以根据自己的需求选择合适的作品进行购买。NeutronField定位于为用户提供便捷、高效的AI文本到图像生成服务。
生成高质量逼真图像的文本到图像技术
Imagen 2 是我们最先进的文本到图像扩散技术,可生成与用户提示密切对齐且一致的高质量逼真图像。它通过使用训练数据的自然分布生成更加逼真的图像,而不是采用预先编程的风格。Imagen 2 强大的文本到图像技术通过 Google Cloud Vertex AI 的 Imagen API 为开发者和云客户提供支持。Google Arts and Culture 团队还在其文化标志实验中部署了我们的 Imagen 2 技术,使用户可以通过 Google AI 探索、学习和测试其文化知识。
开源文本到图像生成模型
AuraFlow v0.3是一个完全开源的基于流的文本到图像生成模型。与之前的版本AuraFlow-v0.2相比,该模型经过了更多的计算训练,并在美学数据集上进行了微调,支持各种宽高比,宽度和高度可达1536像素。该模型在GenEval上取得了最先进的结果,目前处于beta测试阶段,正在不断改进中,社区反馈非常重要。
开源的文本到图像生成模型
OpenFLUX.1是一个基于FLUX.1-schnell模型的微调版本,移除了蒸馏过程,使其可以进行微调,并且拥有开源、宽松的许可证Apache 2.0。该模型能够生成令人惊叹的图像,并且只需1-4步即可完成。它是一个尝试去除蒸馏过程,创建一个可以微调的开源许可模型。
基于文本生成高质量图像的AI模型
SD3.5-LoRA-Linear-Red-Light是一个基于文本到图像生成的AI模型,通过使用LoRA(Low-Rank Adaptation)技术,该模型能够根据用户提供的文本提示生成高质量的图像。这种技术的重要性在于它能够以较低的计算成本实现模型的微调,同时保持生成图像的多样性和质量。该模型基于Stable Diffusion 3.5 Large模型,并在此基础上进行了优化和调整,以适应特定的图像生成需求。
高度写实的文本到图像模型
Deep floyd是一个开源的文本到图像模型,具有高度的写实性和语言理解能力。它由一个冻结的文本编码器和三个级联的像素扩散模块组成:一个基础模型用于根据文本提示生成 64x64 像素的图像,以及两个超分辨率模型,分别用于生成分辨率逐渐增加的图像:256x256 像素和 1024x1024 像素。模型的所有阶段都利用基于 T5 transformer 的冻结文本编码器来提取文本嵌入,然后将其输入到一个增强了交叉注意力和注意力池化的 UNet 架构中。这个高效的模型在性能上超过了当前的最先进模型,在 COCO 数据集上实现了零样本 FID 得分为 6.66。我们的工作强调了级联扩散模型的第一阶段中更大的 UNet 架构的潜力,并展示了文本到图像合成的一个有前途的未来。
12亿参数的文本到图像生成模型
FLUX.1-dev是一个拥有12亿参数的修正流变换器,能够根据文本描述生成图像。它代表了文本到图像生成技术的最新发展,具有先进的输出质量,仅次于其专业版模型FLUX.1 [pro]。该模型通过指导蒸馏训练,提高了效率,并且开放权重以推动新的科学研究,并赋予艺术家开发创新工作流程的能力。生成的输出可以用于个人、科学和商业目的,具体如flux-1-dev-non-commercial-license所述。
文本到图像生成中风格保留的 InstantStyle。
InstantStyle 是一个通用框架,利用两种简单但强大的技术,实现对参考图像中风格和内容的有效分离。其原则包括将内容从图像中分离出来、仅注入到风格块中,并提供样式风格的合成和图像生成等功能。InstantStyle 可以帮助用户在文本到图像生成过程中保持风格,为用户提供更好的生成体验。
TensorRT加速的Stable Diffusion扩展
Stable-Diffusion-WebUI-TensorRT是一个用于Stable Diffusion的TensorRT加速扩展,可在NVIDIA RTX GPU上实现最佳性能。该扩展需要安装并生成优化的引擎才能使用。支持Stable Diffusion 1.5和2.1版本。安装步骤请参考官方网址。使用时,可以生成默认引擎,选择TRT模型,加速生成图像。可以根据需要生成多个优化引擎。详细的使用说明和常见问题请参考官方文档。
一款基于Midjourney风格的文本到图像生成模型,专注于高分辨率和写实风格的图像创作。
Flux-Midjourney-Mix2-LoRA 是一款基于深度学习的文本到图像生成模型,旨在通过自然语言描述生成高质量的图像。该模型基于Diffusion架构,结合了LoRA技术,能够实现高效的微调和风格化图像生成。其主要优点包括高分辨率输出、多样化的风格支持以及对复杂场景的出色表现能力。该模型适用于需要高质量图像生成的用户,如设计师、艺术家和内容创作者,能够帮助他们快速实现创意构思。
基于Transformer的通用领域文本到图像生成
CogView是一个用于通用领域文本到图像生成的预训练Transformer模型。该模型包含410亿参数,能够生成高质量、多样化的图像。模型的训练思路采用抽象到具体的方式,先 pretrain 获得通用知识,然后 finetune 在特定域生成图像,能显著提升生成质量。值得一提的是,论文还提出了两种帮助大模型稳定训练的技巧:PB-relax 和 Sandwich-LN。
本地运行稳定的 Diffusion 模型的最简单方式
Diffusion Bee 是在 Intel/M1 Mac 上本地运行稳定的 Diffusion 模型的最简单方式,提供一键安装程序,无需依赖或技术知识。 Diffusion Bee 在您的计算机上本地运行,不会将任何数据发送到云端(除非您选择上传图像)。 主要功能: - 图像转换 - 图像修复 - 图像生成历史记录 - 图像放大 - 多种图像尺寸 - 针对 M1/M2 芯片进行优化 - 支持负向提示和高级提示选项 - 控制网络 Diffusion Bee 是基于 Stable Diffusion 的 GUI 封装,所以所有 Stable Diffusion 的条款适用于输出结果。 欲了解更多信息,请访问文档。 系统要求: - 配有 Intel 或 M1/M2 芯片的 Mac - 对于 Intel 芯片:MacOS 12.3.1 或更高版本 - 对于 M1/M2 芯片:MacOS 11.0.0 或更高版本 许可证:Stable Diffusion 发布在 CreativeML OpenRAIL M 许可下。
快速的移动端文本到图像生成工具
MobileDiffusion是一个轻量级的潜在扩散模型,专为移动设备设计,可以在0.5秒内根据文本提示生成512x512高质量图像。相较于其他文本到图像模型,它更小巧(仅520M参数),非常适合在手机上部署使用。它的主要功能包括:1)基于文本生成图像;2)快速生成,0.5秒内完成;3)小巧的参数量,仅520M;4)生成高质量图像。主要使用场景包括内容创作、艺术创作、游戏和App开发等领域。示例使用包括:输入'盛开的玫瑰花'生成玫瑰花图片,输入'金色 retrievier 撒欢跑'生成小狗图片,输入'火星风景,外太空'生成火星图。相较于其他大模型,它更适合在移动设备上部署使用。
先进文本生成图像模型
Stable Diffusion 3是由Stability AI开发的最新文本生成图像模型,具有显著进步的图像保真度、多主体处理和文本匹配能力。利用多模态扩散变换器(MMDiT)架构,提供单独的图像和语言表示,支持API、下载和在线平台访问,适用于各种应用场景。
快速个性化文本到图像模型
HyperDreamBooth是由Google Research开发的一种超网络,用于快速个性化文本到图像模型。它通过从单张人脸图像生成一组小型的个性化权重,结合快速微调,能够在多种上下文和风格中生成具有高主题细节的人脸图像,同时保持模型对多样化风格和语义修改的关键知识。
基于LLM的文本到图像生成系统
DiffusionGPT是一种基于大型语言模型(LLM)的文本到图像生成系统。它利用扩散模型构建了针对各种生成模型的领域特定树,从而能够无缝地适应各种类型的提示并集成领域专家模型。此外,DiffusionGPT引入了优势数据库,其中的思维树得到了人类反馈的丰富,使模型选择过程与人类偏好保持一致。通过广泛的实验和比较,我们展示了DiffusionGPT的有效性,展示了它在不同领域推动图像合成边界的潜力。
© 2025 AIbase 备案号:闽ICP备08105208号-14