需求人群:
"该产品适合需要高质量图像生成的用户,如设计师、艺术家和内容创作者,能够帮助他们快速实现创意构思,节省时间和精力。同时,对于研究人员和开发者,该模型提供了强大的工具用于进一步的开发和研究。"
使用场景示例:
生成一张穿着红色连衣裙的女性肖像,背景为深绿色,风格类似于Unsplash摄影。
生成一张在黑暗中被强烈黄色光线照亮的鸟的肖像,背景为柔和的蓝色渐变。
生成一张穿着黑色外套和黄色围巾的男子在伦敦现代玻璃摩天大楼前打电话的照片,采用街拍风格。
产品特色:
支持高分辨率图像生成(如768x1024和1024x1024)
提供多样化的风格化图像生成,如复古、现代、写实等
通过LoRA技术实现快速微调,适应不同用户需求
支持多种语言的文本输入,生成对应的图像内容
提供丰富的示例和触发词,帮助用户快速上手
使用教程:
1. 访问模型页面,下载模型权重文件。
2. 安装必要的依赖库,如PyTorch和DiffusionPipeline。
3. 加载基础模型和LoRA权重,设置设备(如GPU)。
4. 使用触发词'MJ v6'结合描述性文本生成图像。
5. 调整参数(如分辨率、风格)以优化生成效果。
浏览量:98
最新流量情况
月访问量
25296.55k
平均访问时长
00:04:45
每次访问页数
5.83
跳出率
43.31%
流量来源
直接访问
48.39%
自然搜索
35.85%
邮件
0.03%
外链引荐
12.76%
社交媒体
2.96%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.77%
印度
8.48%
日本
3.85%
俄罗斯
4.86%
美国
17.58%
新一代文本到图像生成AI模型
Stable Diffusion 3是stability公司推出的新一代文本到图像生成AI模型,相比早期版本在多主体提示、图像质量和拼写能力等方面都有了极大提升。该模型采用了diffusion transformer架构和flow matching技术,参数量范围从800M到8B不等,提供了从个人用户到企业客户多种部署方案。主要功能包括:高质量图片生成、支持多主体、拼写错误纠正等。典型应用场景有:数字艺术创作、图片编辑、游戏和电影制作等。相比早期版本,该AI助手具有更强大的理解和创作能力,是新一代安全、开放、普惠的生成式AI典范。
开源文本到图像生成模型
AuraFlow v0.3是一个完全开源的基于流的文本到图像生成模型。与之前的版本AuraFlow-v0.2相比,该模型经过了更多的计算训练,并在美学数据集上进行了微调,支持各种宽高比,宽度和高度可达1536像素。该模型在GenEval上取得了最先进的结果,目前处于beta测试阶段,正在不断改进中,社区反馈非常重要。
基于Diffusion的文本到图像生成模型,专注于时尚模特摄影风格图像生成
Fashion-Hut-Modeling-LoRA是一个基于Diffusion技术的文本到图像生成模型,主要用于生成时尚模特的高质量图像。该模型通过特定的训练参数和数据集,能够根据文本提示生成具有特定风格和细节的时尚摄影图像。它在时尚设计、广告制作等领域具有重要应用价值,能够帮助设计师和广告商快速生成创意概念图。模型目前仍在训练阶段,可能存在一些生成效果不佳的情况,但已经展示了强大的潜力。该模型的训练数据集包含14张高分辨率图像,使用了AdamW优化器和constant学习率调度器等参数,训练过程注重图像的细节和质量。
一款基于Midjourney风格的文本到图像生成模型,专注于高分辨率和写实风格的图像创作。
Flux-Midjourney-Mix2-LoRA 是一款基于深度学习的文本到图像生成模型,旨在通过自然语言描述生成高质量的图像。该模型基于Diffusion架构,结合了LoRA技术,能够实现高效的微调和风格化图像生成。其主要优点包括高分辨率输出、多样化的风格支持以及对复杂场景的出色表现能力。该模型适用于需要高质量图像生成的用户,如设计师、艺术家和内容创作者,能够帮助他们快速实现创意构思。
控制文本到图像生成过程
FreeControl是一个无需训练就可以实现对文本到图像生成过程的可控制的方法。它支持对多种条件、架构和检查点的同时控制。FreeControl通过结构指导实现与指导图像的结构对齐,通过外观指导实现使用相同种子的生成图像之间的外观共享。FreeControl包含分析阶段和合成阶段。在分析阶段,FreeControl查询文本到图像模型生成少量种子图像,然后从生成的图像构建线性特征子空间。在合成阶段,FreeControl在子空间中运用指导实现与指导图像的结构对齐,以及使用与不使用控制的生成图像之间的外观对齐。
高性能的文本到图像生成模型
Stable Diffusion 3.5 Large 是一个基于文本生成图像的多模态扩散变换器(MMDiT)模型,由 Stability AI 开发。该模型在图像质量、排版、复杂提示理解和资源效率方面都有显著提升。它使用三个固定的预训练文本编码器,并通过 QK 归一化技术提高训练稳定性。此外,该模型在训练数据和策略上使用了包括合成数据和过滤后的公开可用数据。Stable Diffusion 3.5 Large 模型在遵守社区许可协议的前提下,可以免费用于研究、非商业用途,以及年收入少于100万美元的组织或个人的商业用途。
高效能的文本到图像生成模型
Stable Diffusion 3.5 Large Turbo 是一个基于文本生成图像的多模态扩散变换器(MMDiT)模型,采用了对抗性扩散蒸馏(ADD)技术,提高了图像质量、排版、复杂提示理解和资源效率,特别注重减少推理步骤。该模型在生成图像方面表现出色,能够理解和生成复杂的文本提示,适用于多种图像生成场景。它在Hugging Face平台上发布,遵循Stability Community License,适合研究、非商业用途以及年收入少于100万美元的组织或个人免费使用。
先进的文本到图像生成系统
Stable Diffusion 3是一款先进的文本到图像生成系统,它在排版和提示遵循方面与DALL-E 3和Midjourney v6等顶尖系统相匹敌或更优。该系统采用新的多模态扩散变换器(MMDiT)架构,使用不同的权重集来改善图像和语言的表示,从而提高文本理解和拼写能力。Stable Diffusion 3 API现已在Stability AI开发者平台上线,与Fireworks AI合作提供快速可靠的API服务,并承诺在不久的将来通过Stability AI会员资格开放模型权重以供自托管。
连接不同语言模型和生成视觉模型进行文本到图像生成
LaVi-Bridge是一种针对文本到图像扩散模型设计的桥接模型,能够连接各种预训练的语言模型和生成视觉模型。它通过利用LoRA和适配器,提供了一种灵活的插拔式方法,无需修改原始语言和视觉模型的权重。该模型与各种语言模型和生成视觉模型兼容,可容纳不同的结构。在这一框架内,我们证明了通过整合更高级的模块(如更先进的语言模型或生成视觉模型)可以明显提高文本对齐或图像质量等能力。该模型经过大量评估,证实了其有效性。
高效能的文本到图像生成模型
SDXL Flash是由SD社区与Project Fluently合作推出的文本到图像生成模型。它在保持生成图像质量的同时,提供了比LCM、Turbo、Lightning和Hyper更快的处理速度。该模型基于Stable Diffusion XL技术,通过优化步骤和CFG(Guidance)参数,实现了图像生成的高效率和高质量。
基于Stable Diffusion的LoRA模型,生成逼真动漫风格图像
RealAnime - Detailed V1 是一个基于Stable Diffusion的LoRA模型,专门用于生成逼真的动漫风格图像。该模型通过深度学习技术,能够理解并生成高质量的动漫人物图像,满足动漫爱好者和专业插画师的需求。它的重要性在于能够大幅度提高动漫风格图像的生成效率和质量,为动漫产业提供强大的技术支持。目前,该模型在Tensor.Art平台上提供,用户可以通过在线方式使用,无需下载安装,方便快捷。价格方面,用户可以通过购买Buffet计划来解锁下载权益,享受更灵活的使用方式。
灵活的基于 Diffusion 的文本到图像生成模型
伪灵活基础模型(ptx0/pseudo-flex-base)是基于 Diffusion 技术的文本到图像生成模型。它通过将文本描述转换为逼真的图像,提供了灵活的图像生成能力。该模型可以根据给定的文本提示生成与文本描述相符合的图像,具有高度的灵活性和生成效果。该模型还具有稳定的性能和可靠的训练基础,可以广泛应用于人工智能领域的图像生成任务。
轻量级端到端文本到语音模型
OptiSpeech是一个高效、轻量级且快速的文本到语音模型,专为设备端文本到语音转换设计。它利用了先进的深度学习技术,能够将文本转换为自然听起来的语音,适合需要在移动设备或嵌入式系统中实现语音合成的应用。OptiSpeech的开发得到了Pneuma Solutions提供的GPU资源支持,显著加速了开发进程。
基于深度学习的高质量文本到语音合成模型
F5-TTS是由SWivid团队开发的一个文本到语音合成(TTS)模型,它利用深度学习技术将文本转换为自然流畅、忠实于原文的语音输出。该模型在生成语音时,不仅追求高自然度,还注重语音的清晰度和准确性,适用于需要高质量语音合成的各种应用场景,如语音助手、有声读物制作、自动新闻播报等。F5-TTS模型在Hugging Face平台上发布,用户可以方便地下载和部署,支持多种语言和声音类型,具有很高的灵活性和可扩展性。
AI图像生成器
Stable Diffusion 是一个深度学习模型,可以从文本描述生成图像。它提供高质量的图像生成,可以根据简单的文本输入创建逼真的图像。它具有快速生成的优势,可以通过修复和扩展图像的大小来添加或替换图像的部分。Stable Diffusion XL是该模型的最新版本,使用更大的UNet骨干网络生成更高质量的图像。您可以免费在Stable Diffusion在线使用这个AI图像生成器。
多功能文本到图像扩散模型,生成高质量非真实感图像。
Pony Diffusion V6 XL是一个文本到图像的扩散模型,专门设计用于生成以小马为主题的高质量艺术作品。它在大约80,000张小马图像的数据集上进行了微调,确保生成的图像既相关又美观。该模型采用用户友好的界面,易于使用,并通过CLIP进行美学排名,以提升图像质量。Pony Diffusion在CreativeML OpenRAIL许可证下提供,允许用户自由使用、再分发和修改模型。
先进文本生成图像模型
Stable Diffusion 3是由Stability AI开发的最新文本生成图像模型,具有显著进步的图像保真度、多主体处理和文本匹配能力。利用多模态扩散变换器(MMDiT)架构,提供单独的图像和语言表示,支持API、下载和在线平台访问,适用于各种应用场景。
基于FLUX.1-dev模型的LoRA文本到图像生成技术。
flux-RealismLora是由XLabs AI团队发布的基于FLUX.1-dev模型的LoRA技术,用于生成逼真的图像。该技术通过文本提示生成图像,支持多种风格,如动画风格、幻想风格和自然电影风格。XLabs AI提供了训练脚本和配置文件,以方便用户进行模型训练和使用。
先进的文本到图像AI模型,实现高质量图像生成。
Stable Diffusion 3 Medium是Stability AI迄今为止发布的最先进文本到图像生成模型。它具有2亿参数,提供出色的细节、色彩和光照效果,支持多种风格。模型对长文本和复杂提示的理解能力强,能够生成具有空间推理、构图元素、动作和风格的图像。此外,它还实现了前所未有的文本质量,减少了拼写、字距、字母形成和间距的错误。模型资源效率高,适合在标准消费级GPU上运行,且具备微调能力,可以吸收小数据集中的细微细节,非常适合定制化。
开源的文本到图像生成模型
OpenFLUX.1是一个基于FLUX.1-schnell模型的微调版本,移除了蒸馏过程,使其可以进行微调,并且拥有开源、宽松的许可证Apache 2.0。该模型能够生成令人惊叹的图像,并且只需1-4步即可完成。它是一个尝试去除蒸馏过程,创建一个可以微调的开源许可模型。
8B参数变分自编码器模型,用于高效的文本到图像生成。
Flux.1 Lite是一个由Freepik发布的8B参数的文本到图像生成模型,它是从FLUX.1-dev模型中提取出来的。这个版本相较于原始模型减少了7GB的RAM使用,并提高了23%的运行速度,同时保持了与原始模型相同的精度(bfloat16)。该模型的发布旨在使高质量的AI模型更加易于获取,特别是对于消费级GPU用户。
本地运行稳定的 Diffusion 模型的最简单方式
Diffusion Bee 是在 Intel/M1 Mac 上本地运行稳定的 Diffusion 模型的最简单方式,提供一键安装程序,无需依赖或技术知识。 Diffusion Bee 在您的计算机上本地运行,不会将任何数据发送到云端(除非您选择上传图像)。 主要功能: - 图像转换 - 图像修复 - 图像生成历史记录 - 图像放大 - 多种图像尺寸 - 针对 M1/M2 芯片进行优化 - 支持负向提示和高级提示选项 - 控制网络 Diffusion Bee 是基于 Stable Diffusion 的 GUI 封装,所以所有 Stable Diffusion 的条款适用于输出结果。 欲了解更多信息,请访问文档。 系统要求: - 配有 Intel 或 M1/M2 芯片的 Mac - 对于 Intel 芯片:MacOS 12.3.1 或更高版本 - 对于 M1/M2 芯片:MacOS 11.0.0 或更高版本 许可证:Stable Diffusion 发布在 CreativeML OpenRAIL M 许可下。
开源的基于流的文本到图像生成模型
AuraFlow v0.1是一个完全开源的、基于流的文本到图像生成模型,它在GenEval上达到了最先进的结果。目前模型处于beta阶段,正在不断改进中,社区反馈至关重要。感谢两位工程师@cloneofsimo和@isidentical将此项目变为现实,以及为该项目奠定基础的研究人员。
OFT可有效稳定微调文本到图像扩散模型
Controlling Text-to-Image Diffusion研究了如何有效引导或控制强大的文本到图像生成模型进行各种下游任务。提出了正交微调(OFT)方法,可以保持模型的生成能力。OFT可以保持神经元之间的超球面能量不变,防止模型坍塌。作者考虑了两种重要的微调任务:主体驱动生成和可控生成。结果表明,OFT方法在生成质量和收敛速度上优于现有方法。
基于文本生成图像的多模态扩散变换器模型
Stable Diffusion 3.5 Medium是一个基于文本到图像的生成模型,由Stability AI开发,具有改进的图像质量、排版、复杂提示理解和资源效率。该模型使用了三个固定的预训练文本编码器,通过QK-规范化提高训练稳定性,并在前12个变换层中引入双注意力块。它在多分辨率图像生成、一致性和各种文本到图像任务的适应性方面表现出色。
Stable Diffusion WebUI Forge是基于Stable Diffusion WebUI的图像生成平台
Stable Diffusion WebUI Forge基于Stable Diffusion WebUI和Gradio开发,旨在优化资源管理、加速推理。相比原版WebUI在1024px分辨率下的SDXL推理,Forge可提升30-75%的速度,最大分辨率提升2-3倍,最大batch size提升4-6倍。Forge保持了原版WebUI的所有功能,同时新增了DDPM、DPM++、LCM等采样器,实现了Free U、SVD、Zero123等算法。使用Forge的UNet Patcher,开发者可以用极少的代码实现算法。Forge还优化了控制网络的使用,实现真正的零内存占用调用。
文本图像到视频生成模型
Allegro-TI2V是一个文本图像到视频生成模型,它能够根据用户提供的提示和图像生成视频内容。该模型以其开源性、多样化的内容创作能力、高质量的输出、小巧高效的模型参数以及支持多种精度和GPU内存优化而受到关注。它代表了当前人工智能技术在视频生成领域的前沿进展,具有重要的技术价值和商业应用潜力。Allegro-TI2V模型在Hugging Face平台上提供,遵循Apache 2.0开源协议,用户可以免费下载和使用。
高度写实的文本到图像模型
Deep floyd是一个开源的文本到图像模型,具有高度的写实性和语言理解能力。它由一个冻结的文本编码器和三个级联的像素扩散模块组成:一个基础模型用于根据文本提示生成 64x64 像素的图像,以及两个超分辨率模型,分别用于生成分辨率逐渐增加的图像:256x256 像素和 1024x1024 像素。模型的所有阶段都利用基于 T5 transformer 的冻结文本编码器来提取文本嵌入,然后将其输入到一个增强了交叉注意力和注意力池化的 UNet 架构中。这个高效的模型在性能上超过了当前的最先进模型,在 COCO 数据集上实现了零样本 FID 得分为 6.66。我们的工作强调了级联扩散模型的第一阶段中更大的 UNet 架构的潜力,并展示了文本到图像合成的一个有前途的未来。
© 2025 AIbase 备案号:闽ICP备08105208号-14