高分辨率、长时音频驱动的人像图像动画技术
Hallo2是一种基于潜在扩散生成模型的人像图像动画技术,通过音频驱动生成高分辨率、长时的视频。它通过引入多项设计改进,扩展了Hallo的功能,包括生成长时视频、4K分辨率视频,并增加了通过文本提示增强表情控制的能力。Hallo2的主要优点包括高分辨率输出、长时间的稳定性以及通过文本提示增强的控制性,这使得它在生成丰富多样的肖像动画内容方面具有显著优势。
Loopy,仅凭音频驱动肖像头像,实现逼真动态。
Loopy是一个端到端的音频驱动视频扩散模型,专门设计了跨剪辑和内部剪辑的时间模块以及音频到潜在表示模块,使模型能够利用数据中的长期运动信息来学习自然运动模式,并提高音频与肖像运动的相关性。这种方法消除了现有方法中手动指定的空间运动模板的需求,实现了在各种场景下更逼真、高质量的结果。
端到端音频驱动的人体动画框架
CyberHost是一个端到端音频驱动的人体动画框架,通过区域码本注意力机制,实现了手部完整性、身份一致性和自然运动的生成。该模型利用双U-Net架构作为基础结构,并通过运动帧策略进行时间延续,为音频驱动的人体动画建立了基线。CyberHost通过一系列以人为先导的训练策略,包括身体运动图、手部清晰度评分、姿势对齐的参考特征和局部增强监督,提高了合成结果的质量。CyberHost是首个能够在人体范围内实现零样本视频生成的音频驱动人体扩散模型。
生成逼真动态人像视频的先进技术
EchoMimic是一个先进的人像图像动画模型,能够通过音频和选定的面部特征点单独或组合驱动生成逼真的肖像视频。它通过新颖的训练策略,解决了传统方法在音频驱动时可能的不稳定性以及面部关键点驱动可能导致的不自然结果。EchoMimic在多个公共数据集和自收集数据集上进行了全面比较,并在定量和定性评估中展现出了卓越的性能。
生成会说话、唱歌的动态视频
AniPortrait是一个根据音频和图像输入生成会说话、唱歌的动态视频的项目。它能够根据音频和静态人脸图片生成逼真的人脸动画,口型保持一致。支持多种语言和面部重绘、头部姿势控制。功能包括音频驱动的动画合成、面部再现、头部姿势控制、支持自驱动和音频驱动的视频生成、高质量动画生成以及灵活的模型和权重配置。
生成逼真、唇同步的说唱视频
VividTalk是一种一次性音频驱动的头像生成技术,基于3D混合先验。它能够生成具有表情丰富、自然头部姿态和唇同步的逼真说唱视频。该技术采用了两阶段通用框架,支持生成具有上述所有特性的高视觉质量的说唱视频。具体来说,在第一阶段,通过学习两种运动(非刚性表情运动和刚性头部运动),将音频映射到网格。对于表情运动,采用混合形状和顶点作为中间表示,以最大化模型的表征能力。对于自然头部运动,提出了一种新颖的可学习头部姿势码本,并采用两阶段训练机制。在第二阶段,提出了一个双分支运动VAE和一个生成器,将网格转换为密集运动,并逐帧合成高质量视频。大量实验证明,VividTalk能够生成具有唇同步和逼真增强的高视觉质量说唱视频,且在客观和主观比较中优于以往的最先进作品。该技术的代码将在发表后公开发布。
音频驱动的视频编辑,实现高质量唇形同步
VideoReTalking是一个新的系统,可以根据输入的音频编辑真实世界的说话头部视频的面部,产生高质量的唇形同步输出视频,即使情感不同。该系统将此目标分解为三个连续的任务:(1)使用表情编辑网络生成带有规范表情的面部视频;(2)音频驱动的唇形同步;(3)用于提高照片逼真度的面部增强。给定一个说话头部视频,我们首先使用表情编辑网络根据相同的表情模板修改每个帧的表情,从而得到具有规范表情的视频。然后将该视频与给定的音频一起输入到唇形同步网络中,生成唇形同步视频。最后,我们通过一个身份感知的面部增强网络和后处理来提高合成面部的照片逼真度。我们对所有三个步骤使用基于学习的方法,所有模块都可以在顺序管道中处理,无需任何用户干预。
© 2024 AIbase 备案号:闽ICP备08105208号-14