需求人群:
"适用于视频合成、图像到视频、视频修补、风格化生成等内容创作和视频编辑应用"
使用场景示例:
视频合成应用场景示例
图像到视频应用场景示例
视频修补应用场景示例
产品特色:
合成展现真实、多样和连贯运动的视频
一次性生成整个视频的时间持续
轻松促进各种内容创作任务和视频编辑应用
浏览量:3054
最新流量情况
月访问量
29742.94k
平均访问时长
00:04:44
每次访问页数
5.85
跳出率
44.20%
流量来源
直接访问
50.45%
自然搜索
33.93%
邮件
0.03%
外链引荐
12.90%
社交媒体
2.67%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
21.55%
印度
7.98%
日本
2.93%
俄罗斯
5.29%
美国
16.06%
视频生成的时空扩散模型
Lumiere是一个文本到视频扩散模型,旨在合成展现真实、多样和连贯运动的视频,解决视频合成中的关键挑战。我们引入了一种空时U-Net架构,可以一次性生成整个视频的时间持续,通过模型的单次传递。这与现有的视频模型形成对比,后者合成远距离的关键帧,然后进行时间超分辨率处理,这种方法本质上使得全局时间一致性难以实现。通过部署空间和(重要的是)时间的下采样和上采样,并利用预训练的文本到图像扩散模型,我们的模型学会直接生成多个时空尺度下的全帧率、低分辨率视频。我们展示了最先进的文本到视频生成结果,并展示了我们的设计轻松促进了各种内容创作任务和视频编辑应用,包括图像到视频、视频修补和风格化生成。
Wan 2.1 AI 是一款将文本和图像转化为高质量视频的先进 AI 视频生成模型。
Wan 2.1 AI 是由阿里巴巴开发的开源大规模视频生成 AI 模型。它支持文本到视频(T2V)和图像到视频(I2V)的生成,能够将简单的输入转化为高质量的视频内容。该模型在视频生成领域具有重要意义,能够极大地简化视频创作流程,降低创作门槛,提高创作效率,为用户提供丰富多样的视频创作可能性。其主要优点包括高质量的视频生成效果、复杂动作的流畅展现、逼真的物理模拟以及丰富的艺术风格等。目前该产品已完全开源,用户可以免费使用其基础功能,对于有视频创作需求但缺乏专业技能或设备的个人和企业来说,具有很高的实用价值。
Wan2GP 是一个优化后的开源视频生成模型,专为低配置 GPU 用户设计,支持多种视频生成任务。
Wan2GP 是基于 Wan2.1 的改进版本,旨在为低配置 GPU 用户提供高效、低内存占用的视频生成解决方案。该模型通过优化内存管理和加速算法,使得普通用户也能在消费级 GPU 上快速生成高质量的视频内容。它支持多种任务,包括文本到视频、图像到视频、视频编辑等,同时具备强大的视频 VAE 架构,能够高效处理 1080P 视频。Wan2GP 的出现降低了视频生成技术的门槛,使得更多用户能够轻松上手并应用于实际场景。
Wan2.1-T2V-14B 是一款高性能的文本到视频生成模型,支持多种视频生成任务。
Wan2.1-T2V-14B 是一款先进的文本到视频生成模型,基于扩散变换器架构,结合了创新的时空变分自编码器(VAE)和大规模数据训练。它能够在多种分辨率下生成高质量的视频内容,支持中文和英文文本输入,并在性能和效率上超越现有的开源和商业模型。该模型适用于需要高效视频生成的场景,如内容创作、广告制作和视频编辑等。目前该模型在 Hugging Face 平台上免费提供,旨在推动视频生成技术的发展和应用。
FlashVideo 是一个高效的高分辨率视频生成模型,专注于细节和保真度的流动。
FlashVideo 是一款专注于高效高分辨率视频生成的深度学习模型。它通过分阶段的生成策略,首先生成低分辨率视频,再通过增强模型提升至高分辨率,从而在保证细节的同时显著降低计算成本。该技术在视频生成领域具有重要意义,尤其是在需要高质量视觉内容的场景中。FlashVideo 适用于多种应用场景,包括内容创作、广告制作和视频编辑等。其开源性质使得研究人员和开发者可以灵活地进行定制和扩展。
Magic 1-For-1 是一个高效的图像到视频生成模型,可在一分钟内生成一分钟的视频。
Magic 1-For-1 是一个专注于高效视频生成的模型,其核心功能是将文本和图像快速转换为视频。该模型通过将文本到视频的生成任务分解为文本到图像和图像到视频两个子任务,优化了内存使用并减少了推理延迟。其主要优点包括高效性、低延迟和可扩展性。该模型由北京大学 DA-Group 团队开发,旨在推动交互式基础视频生成领域的发展。目前该模型及相关代码已开源,用户可以免费使用,但需遵守开源许可协议。
STAR是一种用于真实世界视频超分辨率的时空增强框架,首次将强大的文本到视频扩散先验集成到真实世界视频超分辨率中。
STAR是一种创新的视频超分辨率技术,通过将文本到视频扩散模型与视频超分辨率相结合,解决了传统GAN方法中存在的过度平滑问题。该技术不仅能够恢复视频的细节,还能保持视频的时空一致性,适用于各种真实世界的视频场景。STAR由南京大学、字节跳动等机构联合开发,具有较高的学术价值和应用前景。
一站式AI数字人系统,支持视频合成、声音合成、声音克隆。
AIGCPanel是一个简单易用的一站式AI数字人系统,小白也可使用。支持视频合成、声音合成、声音克隆,简化本地模型管理、一键导入和使用AI模型。产品背景信息显示,AIGCPanel旨在通过集成多种AI功能,提升数字人素材管理的效率,降低技术门槛,使非专业人士也能轻松管理和使用AI数字人。产品基于AGPL-3.0开源,完全免费,可以直接使用。
一站式AI数字人系统,支持视频合成、声音合成、声音克隆
AigcPanel是一个简单易用的一站式AI数字人系统,支持视频合成、声音合成、声音克隆等功能,简化本地模型管理、一键导入和使用AI模型。该产品利用最新的人工智能技术,为用户提供高效、便捷的数字人制作解决方案,特别适合需要视频和音频内容制作的专业人士和企业使用。AigcPanel以其易用性、高效性和强大的功能,在数字人制作领域占有一席之地。
快速AI视频生成平台
ClipVideo AI是一个专业的AI视频生成平台,它利用人工智能技术将照片或简单的文本提示转换成引人入胜的视频。该平台以其快速的视频生成工具、企业级的安全性和支持、以及被众多团队信赖而著称。ClipVideo AI提供了从基础到专业的不同定价计划,满足不同用户的需求。
高保真视频编码,适用于大运动场景的视频自编码器。
这是一个视频变分自编码器(VAE),旨在减少视频冗余并促进高效视频生成。该模型通过观察发现,将图像VAE直接扩展到3D VAE会引入运动模糊和细节失真,因此提出了时间感知的空间压缩以更好地编码和解码空间信息。此外,该模型还集成了一个轻量级的运动压缩模型以实现进一步的时间压缩。通过利用文本到视频数据集中固有的文本信息,并在模型中加入文本指导,显著提高了重建质量,特别是在细节保留和时间稳定性方面。该模型还通过在图像和视频上进行联合训练来提高其通用性,不仅提高了重建质量,还使模型能够执行图像和视频的自编码。广泛的评估表明,该方法的性能优于最近的强基线。
高质量身份保留的人像动画合成工具。
StableAnimator是首个端到端身份保留的视频扩散框架,能够在不进行后处理的情况下合成高质量视频。该技术通过参考图像和一系列姿势进行条件合成,确保了身份一致性。其主要优点在于无需依赖第三方工具,适合需要高质量人像动画的用户。
AI视频创作平台,快速制作专业视频
Zebracat是一个利用人工智能技术,帮助用户将文本、博客内容快速转换成专业视频的平台。它通过AI视频生成器,提供文本到视频、博客到视频、AI场景生成等功能,极大地简化了视频制作流程,提高了内容创作的效率。Zebracat的主要优点包括快速生成视频、无需专业编辑技能、支持多种语言和AI配音,以及提供高影响力的营销视频。产品背景信息显示,Zebracat受到超过50,000名AI创作者的喜爱,并在Product Hunt上获得高度评价。
AI视频生成器,将想象变为现实
Pollo AI是一个创新的AI视频生成器,它允许用户轻松创建令人惊叹的视频。用户可以通过简单的文本提示或静态图片,快速生成具有特定风格和内容的视频。Pollo AI以其用户友好的界面、广泛的定制选项和高质量的输出而脱颖而出,是初学者和经验丰富的创作者的首选。它不仅支持文本到视频的生成,还可以根据图片内容和用户需求生成视频,拥有多种模板,包括AI拥抱视频生成器,可以轻松制作温馨感人的拥抱视频。Pollo AI以其快速的视频生成能力、高质量的输出和无需技术视频编辑技能即可使用的易用性,为用户提供了无限的创作可能性。
基于频率分解的身份保持文本到视频生成模型
ConsisID是一个基于频率分解的身份保持文本到视频生成模型,它通过在频域中使用身份控制信号来生成与输入文本描述一致的高保真度视频。该模型不需要针对不同案例进行繁琐的微调,并且能够保持生成视频中人物身份的一致性。ConsisID的提出,推动了视频生成技术的发展,特别是在无需调整的流程和频率感知的身份保持控制方案方面。
文本图像到视频生成模型
Allegro-TI2V是一个文本图像到视频生成模型,它能够根据用户提供的提示和图像生成视频内容。该模型以其开源性、多样化的内容创作能力、高质量的输出、小巧高效的模型参数以及支持多种精度和GPU内存优化而受到关注。它代表了当前人工智能技术在视频生成领域的前沿进展,具有重要的技术价值和商业应用潜力。Allegro-TI2V模型在Hugging Face平台上提供,遵循Apache 2.0开源协议,用户可以免费下载和使用。
高效率自回归视频生成模型
Pyramid Flow miniFLUX是一个基于流匹配的自回归视频生成方法,专注于训练效率和开源数据集的使用。该模型能够生成高质量的10秒768p分辨率、24帧每秒的视频,并自然支持图像到视频的生成。它是视频内容创作和研究领域的一个重要工具,尤其在需要生成连贯动态图像的场合。
开源视频生成模型,支持10秒视频和更高分辨率。
CogVideoX1.5-5B-SAT是由清华大学知识工程与数据挖掘团队开发的开源视频生成模型,是CogVideoX模型的升级版。该模型支持生成10秒视频,并支持更高分辨率的视频生成。模型包含Transformer、VAE和Text Encoder等模块,能够根据文本描述生成视频内容。CogVideoX1.5-5B-SAT模型以其强大的视频生成能力和高分辨率支持,为视频内容创作者提供了一个强大的工具,尤其在教育、娱乐和商业领域有着广泛的应用前景。
海螺AI在线视频生成器,用文字创造视频。
Hailuo AI是由MiniMax开发的一款先进的人工智能生产力工具,旨在改变视频内容创作的方式。这一创新平台允许用户通过简单的文字提示生成高质量的视频,特别适合营销人员、教育工作者和内容创作者使用。Hailuo AI以其快速的处理时间和广泛的艺术风格而表现出色,结合文本和图像提示的功能可实现高度个性化的输出,因此对追求灵活性的创作者很有吸引力。
使用AI快速创建病毒式视频
Viral Video是一个利用人工智能技术帮助用户快速创建病毒式视频的在线平台。它通过文本到视频的转换、文本到语音的转换、AI视频编辑和AI场景生成等功能,简化了视频制作流程,降低了成本,并提高了视频的吸引力和传播潜力。该平台特别适合内容创作者、营销人员和社交媒体运营者,帮助他们以更低的成本和更快的速度制作出高质量的视频内容,从而在社交媒体上获得更多的关注和互动。
开源视频生成模型
Mochi 1 是 Genmo 公司推出的一款研究预览版本的开源视频生成模型,它致力于解决当前AI视频领域的基本问题。该模型以其无与伦比的运动质量、卓越的提示遵循能力和跨越恐怖谷的能力而著称,能够生成连贯、流畅的人类动作和表情。Mochi 1 的开发背景是响应对高质量视频内容生成的需求,特别是在游戏、电影和娱乐行业中。产品目前提供免费试用,具体定价信息未在页面中提供。
先进的文本到视频生成模型
Allegro是由Rhymes AI开发的高级文本到视频模型,它能够将简单的文本提示转换成高质量的短视频片段。Allegro的开源特性使其成为创作者、开发者和AI视频生成领域研究人员的强大工具。Allegro的主要优点包括开源、内容创作多样化、高质量输出以及模型体积小且高效。它支持多种精度(FP32、BF16、FP16),在BF16模式下,GPU内存使用量为9.3 GB,上下文长度为79.2k,相当于88帧。Allegro的技术核心包括大规模视频数据处理、视频压缩成视觉令牌以及扩展视频扩散变换器。
可控角色视频合成技术
MIMO是一个通用的视频合成模型,能够模仿任何人在复杂动作中与物体互动。它能够根据用户提供的简单输入(如参考图像、姿势序列、场景视频或图像)合成具有可控属性(如角色、动作和场景)的角色视频。MIMO通过将2D视频编码为紧凑的空间代码,并将其分解为三个空间组成部分(主要人物、底层场景和浮动遮挡)来实现这一点。这种方法允许用户灵活控制,空间运动表达以及3D感知合成,适用于交互式真实世界场景。
高保真新视角合成的视频扩散模型
ViewCrafter 是一种新颖的方法,它利用视频扩散模型的生成能力以及基于点的表示提供的粗略3D线索,从单个或稀疏图像合成通用场景的高保真新视角。该方法通过迭代视图合成策略和相机轨迹规划算法,逐步扩展3D线索和新视角覆盖的区域,从而扩大新视角的生成范围。ViewCrafter 可以促进各种应用,例如通过优化3D-GS表示实现沉浸式体验和实时渲染,以及通过场景级文本到3D生成实现更富有想象力的内容创作。
创意智能平台,用于构建魔法般的AI产品
Dream Machine API是一个创意智能平台,它提供了一系列先进的视频生成模型,通过直观的API和开源SDKs,用户可以构建和扩展创意AI产品。该平台拥有文本到视频、图像到视频、关键帧控制、扩展、循环和相机控制等功能,旨在通过创意智能与人类合作,帮助他们创造更好的内容。Dream Machine API的推出,旨在推动视觉探索和创造的丰富性,让更多的想法得以尝试,构建更好的叙事,并让那些以前无法做到的人讲述多样化的故事。
从长视频中生成引人入胜的YouTube短片
AI Youtube Shorts Generator 是一个利用GPT-4和Whisper技术的Python工具,它可以从长视频中提取最有趣的亮点,检测演讲者,并将内容垂直裁剪,以适应短片格式。这个工具目前处于0.1版本,可能存在一些bug。
开源的文本到视频生成模型
CogVideo是由清华大学团队开发的文本到视频生成模型,它通过深度学习技术将文本描述转换为视频内容。该技术在视频内容创作、教育、娱乐等领域具有广泛的应用前景。CogVideo模型通过大规模预训练,能够生成与文本描述相匹配的视频,为视频制作提供了一种全新的自动化方式。
生成视频的开源模型
CogVideoX是一个开源的视频生成模型,由清华大学团队开发,支持从文本描述生成视频。它提供了多种视频生成模型,包括入门级和大型模型,以满足不同质量和成本需求。模型支持多种精度,包括FP16和BF16,推荐使用与模型训练时相同的精度进行推理。CogVideoX-5B模型特别适用于需要生成高质量视频内容的场景,如电影制作、游戏开发和广告创意。
© 2025 AIbase 备案号:闽ICP备08105208号-14