浏览量:18
最新流量情况
月访问量
25537.07k
平均访问时长
00:04:47
每次访问页数
5.87
跳出率
44.24%
流量来源
直接访问
48.78%
自然搜索
35.41%
邮件
0.03%
外链引荐
12.86%
社交媒体
2.83%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
16.45%
德国
3.44%
印度
9.03%
俄罗斯
5.18%
美国
16.86%
动态视角合成的扩散先验模型
本论文提出了一种基于扩散先验的动态视角合成方法,用于从单目视频中生成动态场景的新视角。该方法通过对视频帧进行微调和知识蒸馏,实现了几何一致性和场景一致性。论文通过定性和定量实验评估了方法的有效性和鲁棒性,证明了该方法在复杂场景下的优势。
从单目视频重建时间一致的4D人体模型
DressRecon是一个用于从单目视频重建时间一致的4D人体模型的方法,专注于处理非常宽松的服装或手持物体交互。该技术结合了通用的人体先验知识(从大规模训练数据中学习得到)和针对单个视频的特定“骨骼袋”变形(通过测试时优化进行拟合)。DressRecon通过学习一个神经隐式模型来分离身体与服装变形,作为单独的运动模型层。为了捕捉服装的微妙几何形状,它利用基于图像的先验知识,如人体姿势、表面法线和光流,在优化过程中进行调整。生成的神经场可以提取成时间一致的网格,或者进一步优化为显式的3D高斯,以提高渲染质量和实现交互式可视化。DressRecon在包含高度挑战性服装变形和物体交互的数据集上,提供了比以往技术更高的3D重建保真度。
利用动态NeRF进行大规模运动和视角变化的人体视频编辑
DynVideo-E是一款利用动态NeRF技术进行大规模运动和视角变化的人体视频编辑工具。该工具将视频表示为3D前景规范化的人体空间,结合变形场和3D背景静态空间。通过利用重建损失、2D个性化扩散先验、3D扩散先验和局部部分超分辨率等技术,在多视角多姿势配置下编辑可动的规范化人体空间。同时,通过特征空间的风格转换损失将参考风格转移到3D背景模型中。用户可以在编辑后的视频-NeRF模型中根据源视频相机姿态进行相应的渲染。DynVideo-E不仅能够处理短视频,还能够处理大规模运动和视角变化的人体视频,为用户提供了更多直接可控的编辑方式。该工具在两个具有挑战性的数据集上的实验证明,相比于现有方法,DynVideo-E在人类偏好方面取得了50% ~ 95%的显著优势。DynVideo-E的代码和数据将会向社区发布。
用于编辑动态场景的稀疏控制高斯溅射技术
SC-GS是一种新型表示技术,将动态场景的运动和外观分别用稀疏控制点和密集高斯函数表示。它使用少量控制点学习紧凑的6自由度变换基,这些基可通过插值权重在局部插值,得到3D高斯函数的运动场。它采用变形MLP预测每个控制点的时变6自由度变换,降低学习复杂度,增强学习能力,实现时空连贯的运动模式。同时联合学习3D高斯函数、控制点的规范空间位置和变形MLP,重建3D场景的外观、几何和动态。在训练过程中,控制点的位置和数量会自适应调整以适应不同区域的运动复杂度,并采用尽可能刚性的损失函数强制运动的空间连续性和局部刚性。由于运动表示的显式稀疏性和外观分离,该方法实现了用户控制的运动编辑,同时保留高保真度外观。大量实验表明,该方法在新视图合成和高速渲染方面优于现有方法,并支持新的保留外观的运动编辑应用。
先进的单目深度估计模型
Depth Anything V2 是一个经过改进的单目深度估计模型,它通过使用合成图像和大量未标记的真实图像进行训练,提供了比前一版本更精细、更鲁棒的深度预测。该模型在效率和准确性方面都有显著提升,速度比基于Stable Diffusion的最新模型快10倍以上。
可控角色视频合成技术
MIMO是一个通用的视频合成模型,能够模仿任何人在复杂动作中与物体互动。它能够根据用户提供的简单输入(如参考图像、姿势序列、场景视频或图像)合成具有可控属性(如角色、动作和场景)的角色视频。MIMO通过将2D视频编码为紧凑的空间代码,并将其分解为三个空间组成部分(主要人物、底层场景和浮动遮挡)来实现这一点。这种方法允许用户灵活控制,空间运动表达以及3D感知合成,适用于交互式真实世界场景。
多视角视频生成同步技术
SynCamMaster是一种先进的视频生成技术,它能够从多样化的视角同步生成多摄像机视频。这项技术通过预训练的文本到视频模型,增强了视频内容在不同视角下的动态一致性,对于虚拟拍摄等应用场景具有重要意义。该技术的主要优点包括能够处理开放世界视频的任意视角生成,整合6自由度摄像机姿态,并设计了一种渐进式训练方案,利用多摄像机图像和单目视频作为补充,显著提升了模型性能。
AI视频创作工具,将老照片转化为动态视频。
京亦智能AI视频生成神器是一款利用人工智能技术,将静态的老照片转化为动态视频的产品。它结合了深度学习和图像处理技术,使得用户能够轻松地将珍贵的老照片复活,创造出具有纪念意义的视频内容。该产品的主要优点包括操作简便、效果逼真、个性化定制等。它不仅能够满足个人用户对于家庭影像资料的整理和创新需求,也能为商业用户提供一种新颖的营销和宣传方式。目前,该产品提供免费试用,具体价格和定位信息需进一步了解。
从日常动态视频中快速、准确地估计相机和密集结构
MegaSaM是一个系统,它允许从动态场景的单目视频中准确、快速、稳健地估计相机参数和深度图。该系统突破了传统结构从运动和单目SLAM技术的局限,这些技术通常假设输入视频主要包含静态场景和大量视差。MegaSaM通过深度视觉SLAM框架的精心修改,能够扩展到真实世界中复杂动态场景的视频,包括具有未知视场和不受限制相机路径的视频。该技术在合成和真实视频上的广泛实验表明,与先前和并行工作相比,MegaSaM在相机姿态和深度估计方面更为准确和稳健,运行时间更快或相当。
高保真新视角合成的视频扩散模型
ViewCrafter 是一种新颖的方法,它利用视频扩散模型的生成能力以及基于点的表示提供的粗略3D线索,从单个或稀疏图像合成通用场景的高保真新视角。该方法通过迭代视图合成策略和相机轨迹规划算法,逐步扩展3D线索和新视角覆盖的区域,从而扩大新视角的生成范围。ViewCrafter 可以促进各种应用,例如通过优化3D-GS表示实现沉浸式体验和实时渲染,以及通过场景级文本到3D生成实现更富有想象力的内容创作。
高保真动态城市场景重建技术
OmniRe 是一种用于高效重建高保真动态城市场景的全面方法,它通过设备日志来实现。该技术通过构建基于高斯表示的动态神经场景图,以及构建多个局部规范空间来模拟包括车辆、行人和骑行者在内的各种动态行为者,从而实现了对场景中不同对象的全面重建。OmniRe 允许我们全面重建场景中存在的不同对象,并随后实现所有参与者实时参与的重建场景的模拟。在 Waymo 数据集上的广泛评估表明,OmniRe 在定量和定性方面都大幅超越了先前的最先进方法。
生成多视角视频的模型
Stable Video 4D (SV4D) 是基于 Stable Video Diffusion (SVD) 和 Stable Video 3D (SV3D) 的生成模型,它接受单一视角的视频并生成该对象的多个新视角视频(4D 图像矩阵)。该模型训练生成 40 帧(5 个视频帧 x 8 个摄像机视角)在 576x576 分辨率下,给定 5 个相同大小的参考帧。通过运行 SV3D 生成轨道视频,然后使用轨道视频作为 SV4D 的参考视图,并输入视频作为参考帧,进行 4D 采样。该模型还通过使用生成的第一帧作为锚点,然后密集采样(插值)剩余帧来生成更长的新视角视频。
3D场景重建与动态物体追踪技术
EgoGaussian是一项先进的3D场景重建与动态物体追踪技术,它能够仅通过RGB第一人称视角输入,同时重建3D场景并动态追踪物体的运动。这项技术利用高斯散射的独特离散特性,从背景中分割出动态交互,并通过片段级别的在线学习流程,利用人类活动的动态特性,以时间顺序重建场景的演变并追踪刚体物体的运动。EgoGaussian在野外视频的挑战中超越了先前的NeRF和动态高斯方法,并且在重建模型的质量上也表现出色。
通过扩散模型实现单目视频的相机轨迹重定向。
TrajectoryCrafter 是一种先进的相机轨迹重定向工具,利用扩散模型技术,将单目视频中的相机运动重新设计,提升视频的表现力和视觉吸引力。该技术可广泛应用于影视制作和虚拟现实等领域,具备高效、便捷和创新的特点,旨在为用户提供更多创意自由和控制能力。
将单目视频转换为沉浸式立体3D视频的框架
StereoCrafter是一个创新的框架,它利用基础模型作为先验,通过深度估计和立体视频修复技术,将2D视频转换为沉浸式立体3D视频。这项技术突破了传统方法的局限,提高了显示设备所需的高保真度生成性能。StereoCrafter的主要优点包括能够处理不同长度和分辨率的视频输入,以及通过自回归策略和分块处理来优化视频处理。此外,StereoCrafter还开发了复杂的数据处理流程,以重建大规模、高质量的数据集,支持训练过程。这个框架为3D设备(如Apple Vision Pro和3D显示器)创造沉浸式内容提供了实际的解决方案,可能改变我们体验数字媒体的方式。
高动态视频生成
Make Pixels Dance是一款高动态视频生成工具,通过输入图像或文字指令,生成丰富多样的动态视频效果。该工具具有基础模式和魔法模式,用户可以根据需求选择不同的模式生成视频。产品功能强大,操作简单易用,适用于各种创意视频制作场景。
从单目视频生成高质量4D对象的新型框架
DreamMesh4D是一个结合了网格表示与稀疏控制变形技术的新型框架,能够从单目视频中生成高质量的4D对象。该技术通过结合隐式神经辐射场(NeRF)或显式的高斯绘制作为底层表示,解决了传统方法在空间-时间一致性和表面纹理质量方面的挑战。DreamMesh4D利用现代3D动画流程的灵感,将高斯绘制绑定到三角网格表面,实现了纹理和网格顶点的可微优化。该框架开始于由单图像3D生成方法提供的粗糙网格,通过均匀采样稀疏点来构建变形图,以提高计算效率并提供额外的约束。通过两阶段学习,结合参考视图光度损失、得分蒸馏损失以及其他正则化损失,实现了静态表面高斯和网格顶点以及动态变形网络的学习。DreamMesh4D在渲染质量和空间-时间一致性方面优于以往的视频到4D生成方法,并且其基于网格的表示与现代几何流程兼容,展示了其在3D游戏和电影行业的潜力。
多模态多视角视频数据集和基准挑战
Ego-Exo4D 是一个多模态多视角视频数据集和基准挑战,以捕捉技能人类活动的自我中心和外部中心视频为中心。它支持日常生活活动的多模态机器感知研究。该数据集由 839 位佩戴摄像头的志愿者在全球 13 个城市收集,捕捉了 1422 小时的技能人类活动视频。该数据集提供了专家评论、参与者提供的教程样式的叙述和一句话的原子动作描述等三种自然语言数据集,配对视频使用。Ego-Exo4D 还捕获了多视角和多种感知模态,包括多个视角、七个麦克风阵列、两个 IMUs、一个气压计和一个磁强计。数据集记录时严格遵守隐私和伦理政策,参与者的正式同意。欲了解更多信息,请访问官方网站。
文本引导的高保真3D场景合成
SceneWiz3D是一种新颖的方法,可以从文本中合成高保真的3D场景。它采用混合的3D表示,对对象采用显式表示,对场景采用隐式表示。用户可以通过传统的文本到3D方法或自行提供对象来生成对象。为了配置场景布局并自动放置对象,我们在优化过程中应用了粒子群优化技术。此外,在文本到场景的情况下,对于场景的某些部分(例如角落、遮挡),很难获得多视角监督,导致几何形状劣质。为了缓解这种监督缺失,我们引入了RGBD全景扩散模型作为额外先验,从而实现了高质量的几何形状。广泛的评估支持我们的方法实现了比以前的方法更高的质量,可以生成详细且视角一致的3D场景。
一站式AI数字人系统,支持视频合成、声音合成、声音克隆。
AIGCPanel是一个简单易用的一站式AI数字人系统,小白也可使用。支持视频合成、声音合成、声音克隆,简化本地模型管理、一键导入和使用AI模型。产品背景信息显示,AIGCPanel旨在通过集成多种AI功能,提升数字人素材管理的效率,降低技术门槛,使非专业人士也能轻松管理和使用AI数字人。产品基于AGPL-3.0开源,完全免费,可以直接使用。
AI驱动的视频生成工具,一键生成高质量营销视频
小视频宝(ClipTurbo)是一个AI驱动的视频生成工具,旨在帮助用户轻松创建高质量的营销视频。该工具利用AI技术处理文案、翻译、图标匹配和TTS语音合成,最终使用manim渲染视频,避免了纯生成式AI被平台限流的问题。小视频宝支持多种模板,用户可以根据需要选择分辨率、帧率、宽高比或屏幕方向,模板将自动适配。此外,它还支持多种语音服务,包括内置的EdgeTTS语音。目前,小视频宝仍处于早期开发阶段,仅提供给三花AI的注册用户。
生成丰富可控运动的视频合成工具
Boximator是一款由Jiawei Wang、Yuchen Zhang等人开发的智能视频合成工具。它利用先进的深度学习技术,通过添加文本提示和额外的盒子约束,生成丰富且可控制的视频运动。用户可以通过示例或自定义文本来创造独特的视频场景。Boximator与其他方法相比,使用了来自文本提示的附加盒子约束,提供更灵活的运动控制。
从单张图片生成高质量3D视图和新颖视角的3D生成技术
Stable Video 3D是Stability AI推出的新模型,它在3D技术领域取得了显著进步,与之前发布的Stable Zero123相比,提供了大幅改进的质量和多视角支持。该模型能够在没有相机条件的情况下,基于单张图片输入生成轨道视频,并且能够沿着指定的相机路径创建3D视频。
从单一图像或文本生成可探索的3D场景
VividDream是一项创新技术,能够从单一输入图像或文本提示生成具有环境动态的可探索4D场景。它首先将输入图像扩展为静态3D点云,然后使用视频扩散模型生成动画视频集合,并通过优化4D场景表示来实现一致性运动和沉浸式场景探索。这项技术为生成基于多样真实图像和文本提示的引人入胜的4D体验提供了可能。
一站式AI数字人系统,支持视频合成、声音合成、声音克隆
AigcPanel是一个简单易用的一站式AI数字人系统,支持视频合成、声音合成、声音克隆等功能,简化本地模型管理、一键导入和使用AI模型。该产品利用最新的人工智能技术,为用户提供高效、便捷的数字人制作解决方案,特别适合需要视频和音频内容制作的专业人士和企业使用。AigcPanel以其易用性、高效性和强大的功能,在数字人制作领域占有一席之地。
单文本/图像生成可导航3D场景
LucidDreamer是一种无域3D场景生成技术,通过充分利用现有大规模扩散生成模型的能力,可以从单个文本提示或单个图像生成可导航的3D场景。该方法具有梦境和对齐两个交替步骤,首先根据输入生成多视角一致的图像,然后将新生成的3D场景部分和谐地整合在一起。LucidDreamer生成的高度详细的高斯斑点与以往的3D场景生成方法相比没有目标场景域的限制。
© 2025 AIbase 备案号:闽ICP备08105208号-14