需求人群:
"DressRecon的目标受众是计算机视觉和图形学领域的研究人员和开发者,特别是那些对4D人体模型重建、动作捕捉、虚拟现实和增强现实应用感兴趣的人。该技术提供了一种高质量的人体模型重建方法,对于需要精确人体动作和服装变形模拟的应用场景非常有价值。"
使用场景示例:
在虚拟现实游戏中,使用DressRecon技术为玩家角色提供逼真的动作捕捉。
在电影和动画制作中,利用DressRecon重建演员的动作和服装,以创建更加真实的CG角色。
在时尚设计领域,通过DressRecon技术模拟不同体型和服装的穿着效果。
产品特色:
时间一致的人体模型重建:能够处理非常宽松的服装或手持物体交互。
分层变形:通过身体和服装高斯模型捕捉肢体动作和服装的细微变形。
基于图像的先验知识:使用表面法线、光流等图像基础先验知识作为优化的监督信号。
3D高斯优化:将隐式SDF提取成时间一致的网格,或进一步优化为显式的3D高斯以提高渲染质量。
高保真度3D重建:即使在具有挑战性的服装变形和物体交互的场景中也能实现高保真度的3D重建。
极端视角合成:重建的化身可以从任何视角渲染。
运动分解:通过空间中均匀分布的身体和服装变形层,分别负责不同类型的运动。
使用教程:
1. 准备一段单目视频,视频中包含需要重建的人体动作。
2. 确保视频质量足够高,以便捕捉到人体动作和服装的细微变化。
3. 使用DressRecon提供的代码和工具对视频进行处理。
4. 根据需要调整模型参数,以优化重建结果。
5. 利用DressRecon的分层变形功能,分别处理身体和服装的变形。
6. 使用基于图像的先验知识,如表面法线和光流,来提高重建的准确性。
7. 通过3D高斯优化步骤,进一步提升渲染质量和交互性。
8. 最终,查看并使用重建的4D人体模型进行进一步的应用或分析。
浏览量:34
最新流量情况
月访问量
939
平均访问时长
00:00:00
每次访问页数
1.05
跳出率
40.55%
流量来源
直接访问
34.59%
自然搜索
44.91%
邮件
0.05%
外链引荐
5.08%
社交媒体
14.17%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
美国
100.00%
从单目视频重建时间一致的4D人体模型
DressRecon是一个用于从单目视频重建时间一致的4D人体模型的方法,专注于处理非常宽松的服装或手持物体交互。该技术结合了通用的人体先验知识(从大规模训练数据中学习得到)和针对单个视频的特定“骨骼袋”变形(通过测试时优化进行拟合)。DressRecon通过学习一个神经隐式模型来分离身体与服装变形,作为单独的运动模型层。为了捕捉服装的微妙几何形状,它利用基于图像的先验知识,如人体姿势、表面法线和光流,在优化过程中进行调整。生成的神经场可以提取成时间一致的网格,或者进一步优化为显式的3D高斯,以提高渲染质量和实现交互式可视化。DressRecon在包含高度挑战性服装变形和物体交互的数据集上,提供了比以往技术更高的3D重建保真度。
4D场景创建工具,使用多视图视频扩散模型
CAT4D是一个利用多视图视频扩散模型从单目视频中生成4D场景的技术。它能够将输入的单目视频转换成多视角视频,并重建动态的3D场景。这项技术的重要性在于它能够从单一视角的视频资料中提取并重建出三维空间和时间的完整信息,为虚拟现实、增强现实以及三维建模等领域提供了强大的技术支持。产品背景信息显示,CAT4D由Google DeepMind、Columbia University和UC San Diego的研究人员共同开发,是一个前沿的科研成果转化为实际应用的案例。
从单目视频生成高质量4D对象的新型框架
DreamMesh4D是一个结合了网格表示与稀疏控制变形技术的新型框架,能够从单目视频中生成高质量的4D对象。该技术通过结合隐式神经辐射场(NeRF)或显式的高斯绘制作为底层表示,解决了传统方法在空间-时间一致性和表面纹理质量方面的挑战。DreamMesh4D利用现代3D动画流程的灵感,将高斯绘制绑定到三角网格表面,实现了纹理和网格顶点的可微优化。该框架开始于由单图像3D生成方法提供的粗糙网格,通过均匀采样稀疏点来构建变形图,以提高计算效率并提供额外的约束。通过两阶段学习,结合参考视图光度损失、得分蒸馏损失以及其他正则化损失,实现了静态表面高斯和网格顶点以及动态变形网络的学习。DreamMesh4D在渲染质量和空间-时间一致性方面优于以往的视频到4D生成方法,并且其基于网格的表示与现代几何流程兼容,展示了其在3D游戏和电影行业的潜力。
从单张图片重建逼真的3D人体模型
PSHuman是一个创新的框架,它利用多视图扩散模型和显式重构技术,从单张图片中重建出逼真的3D人体模型。这项技术的重要性在于它能够处理复杂的自遮挡问题,并且在生成的面部细节上避免了几何失真。PSHuman通过跨尺度扩散模型联合建模全局全身形状和局部面部特征,实现了细节丰富且保持身份特征的新视角生成。此外,PSHuman还通过SMPL-X等参数化模型提供的身体先验,增强了不同人体姿态下的跨视图身体形状一致性。PSHuman的主要优点包括几何细节丰富、纹理保真度高以及泛化能力强。
4D重建模型,快速生成动画对象
L4GM是一个4D大型重建模型,能够从单视图视频输入中快速生成动画对象。它采用了一种新颖的数据集,包含多视图视频,这些视频展示了Objaverse中渲染的动画对象。该数据集包含44K种不同的对象和110K个动画,从48个视角渲染,生成了12M个视频,总共包含300M帧。L4GM基于预训练的3D大型重建模型LGM构建,该模型能够从多视图图像输入中输出3D高斯椭球。L4GM输出每帧的3D高斯Splatting表示,然后将其上采样到更高的帧率以实现时间平滑。此外,L4GM还添加了时间自注意力层,以帮助学习时间上的一致性,并使用每个时间步的多视图渲染损失来训练模型。
基于高斯点云的可驱动3D人体模型
D3GA是一个基于高斯点云的可驱动3D人体模型。它可以从多视角的视频中学习生成逼真的3D人体模型。模型使用3D高斯点云技术实时渲染,通过关节角度和关键点来驱动模型形变。与其他方法相比,在相同的训练和测试数据下,D3GA可以生成更高质量的结果。它适用于需要实时渲染和控制3D人体的应用。
创建可动的4D人像化身模型
CAP4D是一种利用可变形多视图扩散模型(Morphable Multi-View Diffusion Models)来创建4D人像化身的技术。它能够从任意数量的参考图像生成不同视角和表情的图像,并将其适配到一个4D化身上,该化身可以通过3DMM控制并实时渲染。这项技术的主要优点包括高度逼真的图像生成、多视角的适应性以及实时渲染的能力。CAP4D的技术背景是基于深度学习和图像生成领域的最新进展,尤其是在扩散模型和3D面部建模方面。由于其高质量的图像生成和实时渲染能力,CAP4D在娱乐、游戏开发、虚拟现实等领域具有广泛的应用前景。目前,该技术是免费提供代码的,但具体的商业化应用可能需要进一步的授权和定价。
高保真文本到4D生成
4D-fy是一种文本到4D生成方法,通过混合分数蒸馏采样技术,结合了多种预训练扩散模型的监督信号,实现了高保真的文本到4D场景生成。其方法通过神经表示参数化4D辐射场,使用静态和动态多尺度哈希表特征,并利用体积渲染从表示中渲染图像和视频。通过混合分数蒸馏采样,首先使用3D感知文本到图像模型(3D-T2I)的梯度来优化表示,然后结合文本到图像模型(T2I)的梯度来改善外观,最后结合文本到视频模型(T2V)的梯度来增加场景的运动。4D-fy可以生成具有引人入胜外观、3D结构和运动的4D场景。
快速从单视图训练高保真的人体3D高斯模型
Human101是一个快速从单视图重建人体的框架。它能够在100秒内训练3D高斯模型,并以60FPS以上渲染1024分辨率的图像,而无需预先存储每帧的高斯属性。Human101管道如下:首先,从单视图视频中提取2D人体姿态。然后,利用姿态驱动3D模拟器生成匹配的3D骨架动画。最后,基于动画构建时间相关的3D高斯模型,进行实时渲染。
从单张图片创建可控3D和4D场景的视频扩散模型
DimensionX是一个基于视频扩散模型的3D和4D场景生成技术,它能够从单张图片中创建出具有可控视角和动态变化的三维和四维场景。这项技术的主要优点包括高度的灵活性和逼真度,能够根据用户提供的提示词生成各种风格和主题的场景。DimensionX的背景信息显示,它是由一群研究人员共同开发的,旨在推动图像生成技术的发展。目前,该技术是免费提供给研究和开发社区使用的。
从单张 RGB 图像生成多个逼真的 3D 人体重建
DiffHuman 是一种概率性的光度逼真的 3D 人体重建方法。它可以从单张 RGB 图像预测一个 3D 人体重建的概率分布,并通过迭代降噪采样多个细节丰富、色彩鲜明的 3D 人体模型。与现有的确定性方法相比,DiffHuman 在未知或不确定区域能生成更加细节丰富的重建结果。同时,我们还引入了一个加速渲染的生成网络,大幅提高了推理速度。
生成任何3D和4D场景的先进框架
GenXD是一个专注于3D和4D场景生成的框架,它利用日常生活中常见的相机和物体运动来联合研究一般的3D和4D生成。由于社区缺乏大规模的4D数据,GenXD首先提出了一个数据策划流程,从视频中获取相机姿态和物体运动强度。基于此流程,GenXD引入了一个大规模的现实世界4D场景数据集:CamVid-30K。通过利用所有3D和4D数据,GenXD框架能够生成任何3D或4D场景。它提出了多视图-时间模块,这些模块分离相机和物体运动,无缝地从3D和4D数据中学习。此外,GenXD还采用了掩码潜在条件,以支持多种条件视图。GenXD能够生成遵循相机轨迹的视频以及可以提升到3D表示的一致3D视图。它在各种现实世界和合成数据集上进行了广泛的评估,展示了GenXD在3D和4D生成方面与以前方法相比的有效性和多功能性。
AI模型,动态多角度视频生成。
Stable Video 4D是Stability AI最新推出的AI模型,它能够将单个对象视频转换成八个不同角度/视图的多个新颖视图视频。这项技术代表了从基于图像的视频生成到完整的3D动态视频合成的能力飞跃。它在游戏开发、视频编辑和虚拟现实等领域具有潜在的应用前景,并且正在不断优化中。
先进的单目深度估计模型
Depth Anything V2 是一个经过改进的单目深度估计模型,它通过使用合成图像和大量未标记的真实图像进行训练,提供了比前一版本更精细、更鲁棒的深度预测。该模型在效率和准确性方面都有显著提升,速度比基于Stable Diffusion的最新模型快10倍以上。
一种基于表面的4D运动建模算法,用于动态人体渲染
SurMo是一种新的动态人体渲染范式,通过联合建模时间运动动力学和人体外观,在一个统一的框架中实现高保真的人体渲染。该方法采用基于表面的三平面表示法高效编码人体运动,并设计了物理运动解码模块和4D外观解码模块,能够合成时变的人体外观效果,如衣服皱褶、运动阴影等。相比于现有方法,SurMo在定量和定性渲染指标上都有显著提升。
高效3D高斯重建模型,实现大场景快速重建
Long-LRM是一个用于3D高斯重建的模型,能够从一系列输入图像中重建出大场景。该模型能在1.3秒内处理32张960x540分辨率的源图像,并且仅在单个A100 80G GPU上运行。它结合了最新的Mamba2模块和传统的transformer模块,通过高效的token合并和高斯修剪步骤,在保证质量的同时提高了效率。与传统的前馈模型相比,Long-LRM能够一次性重建整个场景,而不是仅重建场景的一小部分。在大规模场景数据集上,如DL3DV-140和Tanks and Temples,Long-LRM的性能可与基于优化的方法相媲美,同时效率提高了两个数量级。
将单目视频转换为沉浸式立体3D视频的框架
StereoCrafter是一个创新的框架,它利用基础模型作为先验,通过深度估计和立体视频修复技术,将2D视频转换为沉浸式立体3D视频。这项技术突破了传统方法的局限,提高了显示设备所需的高保真度生成性能。StereoCrafter的主要优点包括能够处理不同长度和分辨率的视频输入,以及通过自回归策略和分块处理来优化视频处理。此外,StereoCrafter还开发了复杂的数据处理流程,以重建大规模、高质量的数据集,支持训练过程。这个框架为3D设备(如Apple Vision Pro和3D显示器)创造沉浸式内容提供了实际的解决方案,可能改变我们体验数字媒体的方式。
用于高质量高效3D重建和生成的大型高斯重建模型
GRM是一种大规模的重建模型,能够在0.1秒内从稀疏视图图像中恢复3D资产,并且在8秒内实现生成。它是一种前馈的基于Transformer的模型,能够高效地融合多视图信息将输入像素转换为像素对齐的高斯分布,这些高斯分布可以反投影成为表示场景的密集3D高斯分布集合。我们的Transformer架构和使用3D高斯分布的方式解锁了一种可扩展、高效的重建框架。大量实验结果证明了我们的方法在重建质量和效率方面优于其他替代方案。我们还展示了GRM在生成任务(如文本到3D和图像到3D)中的潜力,通过与现有的多视图扩散模型相结合。
2D视频转3D模型
Neuralangelo是NVIDIA研究推出的一款利用神经网络进行3D重建的人工智能模型,可以将2D视频片段转换为详细的3D结构,生成逼真的虚拟建筑、雕塑等物体。它能够准确地提取复杂材料的纹理,包括屋顶瓦片、玻璃窗格和光滑的大理石。创意专业人员可以将这些3D对象导入设计应用程序,进一步进行编辑,用于艺术、视频游戏开发、机器人技术和工业数字双胞胎等领域。Neuralangelo的3D重建能力将对创作者产生巨大的帮助,帮助他们在数字世界中重新创建真实世界。该工具最终将使开发人员能够将详细的对象(无论是小雕塑还是巨大的建筑物)导入到虚拟环境中,用于视频游戏或工业数字双胞胎等应用。
基于视频的3D场景重建
VisFusion是一个利用视频数据进行在线3D场景重建的技术,它能够实时地从视频中提取和重建出三维环境。这项技术结合了计算机视觉和深度学习,为用户提供了一个强大的工具,用于创建精确的三维模型。
基于多视图生成重建先验的拖拽式3D编辑工具
MVDrag3D是一个创新的3D编辑框架,它通过利用多视图生成和重建先验来实现灵活且具有创造性的拖拽式3D编辑。该技术的核心是使用多视图扩散模型作为强大的生成先验,以在多个渲染视图中执行一致的拖拽编辑,随后通过重建模型重建编辑对象的3D高斯。MVDrag3D通过视图特定的变形网络调整高斯的位置以实现良好的视图对齐,并提出多视图评分函数以从多个视图中提取生成先验,进一步增强视图一致性和视觉质量。这项技术对于3D建模和设计领域具有重要意义,因为它支持更多样化的编辑效果,并适用于多种对象类别和3D表示。
通过扩散模型实现单目视频的相机轨迹重定向。
TrajectoryCrafter 是一种先进的相机轨迹重定向工具,利用扩散模型技术,将单目视频中的相机运动重新设计,提升视频的表现力和视觉吸引力。该技术可广泛应用于影视制作和虚拟现实等领域,具备高效、便捷和创新的特点,旨在为用户提供更多创意自由和控制能力。
2D肖像视频转4D高斯场编辑工具
PortraitGen是一个基于多模态生成先验的2D肖像视频编辑工具,能够将2D肖像视频提升到4D高斯场,实现多模态肖像编辑。该技术通过追踪SMPL-X系数和使用神经高斯纹理机制,可以快速生成3D肖像并进行编辑。它还提出了一种迭代数据集更新策略和多模态人脸感知编辑模块,以提高表情质量和保持个性化面部结构。
MoMask: 3D 人体运动生成
MoMask 是一个用于基于文本驱动的 3D 人体运动生成的模型。它采用了分层量化方案,以高保真度的细节将人体运动表示为多层离散运动令牌。MoMask 通过两个不同的双向 Transformer 网络进行生成,以从文本输入预测运动令牌。该模型在文本到运动生成任务上优于现有方法,并可以无缝应用于相关任务,如文本引导的时间修复。
DiffSplat 是一个从文本提示和单视图图像生成 3D 高斯点云的生成框架。
DiffSplat 是一种创新的 3D 生成技术,能够从文本提示和单视图图像快速生成 3D 高斯点云。该技术通过利用大规模预训练的文本到图像扩散模型,实现了高效的 3D 内容生成。它解决了传统 3D 生成方法中数据集有限和无法有效利用 2D 预训练模型的问题,同时保持了 3D 一致性。DiffSplat 的主要优点包括高效的生成速度(1~2 秒内完成)、高质量的 3D 输出以及对多种输入条件的支持。该模型在学术研究和工业应用中具有广泛前景,尤其是在需要快速生成高质量 3D 模型的场景中。
3D人体动作的言语和非言语语言统一模型
这是一个由斯坦福大学研究团队开发的多模态语言模型框架,旨在统一3D人体动作中的言语和非言语语言。该模型能够理解并生成包含文本、语音和动作的多模态数据,对于创建能够自然交流的虚拟角色至关重要,广泛应用于游戏、电影和虚拟现实等领域。该模型的主要优点包括灵活性高、训练数据需求少,并且能够解锁如可编辑手势生成和从动作中预测情感等新任务。
从单一图像或文本生成可探索的3D场景
VividDream是一项创新技术,能够从单一输入图像或文本提示生成具有环境动态的可探索4D场景。它首先将输入图像扩展为静态3D点云,然后使用视频扩散模型生成动画视频集合,并通过优化4D场景表示来实现一致性运动和沉浸式场景探索。这项技术为生成基于多样真实图像和文本提示的引人入胜的4D体验提供了可能。
© 2025 AIbase 备案号:闽ICP备08105208号-14