需求人群:
"ViewCrafter 适合那些需要从单一或稀疏图像中合成高保真新视角视频的专业人士,如3D建模师、视觉效果艺术家、游戏开发者和虚拟现实内容创作者。它提供了一种高效的方法来生成高质量的视频帧,同时精确控制相机姿态,这对于创建逼真的3D环境和视觉效果至关重要。"
使用场景示例:
在电影制作中,用于创建逼真的3D场景和特效。
在游戏开发中,用于生成高质量的游戏环境和动态背景。
在虚拟现实中,用于创建沉浸式体验和实时交互场景。
产品特色:
利用视频扩散模型生成高保真和一致性的新视角
采用基于点的表示提供粗略的3D线索以精确控制相机姿态
通过迭代视图合成策略和相机轨迹规划算法扩展新视角的生成范围
优化3D-GS表示以实现沉浸式体验和实时渲染
支持场景级文本到3D生成,促进更富有想象力的内容创作
在多样化的数据集上进行广泛的实验,展示出强大的泛化能力和优越性能
使用教程:
1. 访问 ViewCrafter 网站并阅读项目介绍。
2. 根据需要选择使用单视图或双视图进行新视角合成。
3. 使用提供的代码和工具,上传参考图像或图像集。
4. 利用视频扩散模型生成新视角的预览。
5. 通过迭代视图合成策略和相机轨迹规划算法,优化生成结果。
6. 根据需要调整3D-GS表示,以实现更精确的渲染效果。
7. 利用生成的新视角视频进行进一步的内容创作或应用开发。
浏览量:73
最新流量情况
月访问量
623
平均访问时长
00:00:00
每次访问页数
1.01
跳出率
59.30%
流量来源
直接访问
48.27%
自然搜索
29.26%
邮件
0.04%
外链引荐
8.44%
社交媒体
12.91%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
美国
100.00%
高保真新视角合成的视频扩散模型
ViewCrafter 是一种新颖的方法,它利用视频扩散模型的生成能力以及基于点的表示提供的粗略3D线索,从单个或稀疏图像合成通用场景的高保真新视角。该方法通过迭代视图合成策略和相机轨迹规划算法,逐步扩展3D线索和新视角覆盖的区域,从而扩大新视角的生成范围。ViewCrafter 可以促进各种应用,例如通过优化3D-GS表示实现沉浸式体验和实时渲染,以及通过场景级文本到3D生成实现更富有想象力的内容创作。
从单张图片重建逼真的3D人体模型
PSHuman是一个创新的框架,它利用多视图扩散模型和显式重构技术,从单张图片中重建出逼真的3D人体模型。这项技术的重要性在于它能够处理复杂的自遮挡问题,并且在生成的面部细节上避免了几何失真。PSHuman通过跨尺度扩散模型联合建模全局全身形状和局部面部特征,实现了细节丰富且保持身份特征的新视角生成。此外,PSHuman还通过SMPL-X等参数化模型提供的身体先验,增强了不同人体姿态下的跨视图身体形状一致性。PSHuman的主要优点包括几何细节丰富、纹理保真度高以及泛化能力强。
从单张图片或文本提示生成高质量3D资产
Flex3D是一个两阶段流程,能够从单张图片或文本提示生成高质量的3D资产。该技术代表了3D重建领域的最新进展,可以显著提高3D内容的生成效率和质量。Flex3D的开发得到了Meta的支持,并且团队成员在3D重建和计算机视觉领域有着深厚的背景。
生成新视角的图像,保持语义信息。
GenWarp是一个用于从单张图像生成新视角图像的模型,它通过语义保持的生成变形框架,使文本到图像的生成模型能够学习在哪里变形和在哪里生成。该模型通过增强交叉视角注意力与自注意力来解决现有方法的局限性,通过条件化生成模型在源视图图像上,并纳入几何变形信号,提高了在不同领域场景下的性能。
一种优化扩散模型采样时间表的方法,以提高生成模型的输出质量。
Align Your Steps 是一种用于优化扩散模型(Diffusion Models, DMs)采样时间表的方法。这种方法利用随机微积分的方法,为不同的求解器、训练有素的DMs和数据集找到特定的最优采样时间表。它通过最小化KLUB项来优化时间离散化,即采样调度,从而在相同的计算预算下提高输出质量。该方法在图像、视频以及2D玩具数据合成基准测试中表现出色,优化的采样时间表在几乎所有实验中都优于之前手工制定的时间表。
基于预训练的文本到图像模型生成高质量、多视角一致的3D物体图像。
ViewDiff 是一种利用预训练的文本到图像模型作为先验知识,从真实世界数据中学习生成多视角一致的图像的方法。它在U-Net网络中加入了3D体积渲染和跨帧注意力层,能够在单个去噪过程中生成3D一致的图像。与现有方法相比,ViewDiff生成的结果具有更好的视觉质量和3D一致性。
用扩散模型生成细节丰富的3D人类网格
Chupa是一个3D人体生成流水线,它结合了扩散模型的生成能力和神经渲染技术,可创建多样化、逼真的3D人体。该流水线可以轻松地泛化到未见过的人体姿态,并呈现逼真的效果。Chupa从SMPL-X网格生成潜在空间中的多样化高质量人体网格。
实现灵活且高保真度的图像生成,同时保持身份特征。
InfiniteYou(InfU)是一个基于扩散变换器的强大框架,旨在实现灵活的图像重构,并保持用户身份。它通过引入身份特征并采用多阶段训练策略,显著提升了图像生成的质量和美学,同时改善了文本与图像的对齐。该技术对提高图像生成的相似性和美观性具有重要意义,适用于各种图像生成任务。
免费 AI 创作工具,生成图像、视频及 4K 增强。
vivago.ai 是一个免费的 AI 生成工具和社区,提供文本转图像、图像转视频等功能,让创作变得更加简单高效。用户可以免费生成高质量的图像和视频,支持多种 AI 编辑工具,方便用户进行创作和分享。该平台的定位是为广大创作者提供易用的 AI 工具,满足他们在视觉创作上的需求。
使用 SREF 代码轻松生成特定视觉风格的 AI 艺术。
Midjourney SREF 代码是一项允许用户将特定视觉风格应用于图像生成的功能。使用 SREF 代码可以简化风格描述,使得创作一致的艺术作品变得更加容易。该技术帮助用户探索和分享不同的艺术风格,是 AI 艺术创作的重要工具。
Inductive Moment Matching 是一种新型的生成模型,用于高质量图像生成。
Inductive Moment Matching (IMM) 是一种先进的生成模型技术,主要用于高质量图像生成。该技术通过创新的归纳矩匹配方法,显著提高了生成图像的质量和多样性。其主要优点包括高效性、灵活性以及对复杂数据分布的强大建模能力。IMM 由 Luma AI 和斯坦福大学的研究团队开发,旨在推动生成模型领域的发展,为图像生成、数据增强和创意设计等应用提供强大的技术支持。该项目开源了代码和预训练模型,方便研究人员和开发者快速上手和应用。
私密且无审查的人工智能平台,提供文本、图像和代码生成等功能。
Venice 是一个以隐私保护为核心的人工智能平台,提供文本生成、图像生成和代码生成等多种功能。它强调用户数据的私密性,所有数据仅存储在用户设备上,不会上传至服务器。该平台利用领先的开源 AI 技术,提供无审查、无偏见的智能服务,旨在为用户提供一个自由探索创意和知识的环境。Venice 提供免费和付费两种账户选项,付费用户可享受更高分辨率的图像、无水印、无限制的提示次数等高级功能。
一款用于生成无线条、扁平色彩风格图像和视频的LoRA模型,适用于动漫和设计领域。
Flat Color - Style是一款专为生成扁平色彩风格图像和视频设计的LoRA模型。它基于Wan Video模型训练,具有独特的无线条、低深度效果,适合用于动漫、插画和视频生成。该模型的主要优点是能够减少色彩渗出,增强黑色表现力,同时提供高质量的视觉效果。它适用于需要简洁、扁平化设计的场景,如动漫角色设计、插画创作和视频制作。该模型是免费提供给用户使用的,旨在帮助创作者快速实现具有现代感和简洁风格的视觉作品。
一种用于可变多层透明图像生成的匿名区域变换器技术。
ART 是一种基于深度学习的图像生成技术,专注于生成可变多层透明图像。它通过匿名区域布局和 Transformer 架构,实现了高效的多层图像生成。该技术的主要优点包括高效性、灵活性以及对多层图像生成的支持。它适用于需要精确控制图像层的场景,如图形设计、视觉特效等领域。目前未明确提及价格和具体定位,但其技术特性表明它可能面向专业用户和企业级应用。
CogView4-6B 是一个强大的文本到图像生成模型,专注于高质量图像生成。
CogView4-6B 是由清华大学知识工程组开发的文本到图像生成模型。它基于深度学习技术,能够根据用户输入的文本描述生成高质量的图像。该模型在多个基准测试中表现优异,尤其是在中文文本生成图像方面具有显著优势。其主要优点包括高分辨率图像生成、支持多种语言输入以及高效的推理速度。该模型适用于创意设计、图像生成等领域,能够帮助用户快速将文字描述转化为视觉内容。
CogView4 是一个支持中文和英文的高分辨率文本到图像生成模型。
CogView4 是由清华大学开发的先进文本到图像生成模型,基于扩散模型技术,能够根据文本描述生成高质量图像。它支持中文和英文输入,并且可以生成高分辨率图像。CogView4 的主要优点是其强大的多语言支持和高质量的图像生成能力,适合需要高效生成图像的用户。该模型在 ECCV 2024 上展示,具有重要的研究和应用价值。
微软Copilot是您的AI助手,支持聊天、图像生成、文本编辑等功能,助力日常工作和生活。
Microsoft Copilot是一款由微软开发的AI助手应用,基于OpenAI和微软的AI技术,旨在为用户提供高效、便捷的智能助手服务。它能够帮助用户快速获取信息、生成文本和图像,提升工作效率和创造力。该应用支持多种语言,界面简洁易用,适合不同用户群体。它不仅适用于个人生活,还能在商业和教育场景中发挥重要作用,是一款免费的生产力工具。
强大的AI图像生成与编辑工具,助力设计师和创意工作者将想象力变为现实。
神采AI是一款专注于图像生成与编辑的AI工具,采用先进的AIGC技术,提供多种设计风格和功能,帮助用户快速生成高质量的图像、视频和动画。其主要优点包括操作简单、功能多样、生成效果逼真。该产品面向设计师、市场营销人员、学生等群体,旨在提升设计效率,降低创作门槛。目前提供免费试用服务,适合各类创意工作者。
WHAM 是微软开发的一种生成式游戏模型,用于生成游戏视觉和控制器动作。
WHAM(World and Human Action Model)是由微软研究院开发的一种生成式模型,专门用于生成游戏场景和玩家行为。该模型基于Ninja Theory的《Bleeding Edge》游戏数据训练,能够生成连贯、多样化的游戏视觉和控制器动作。WHAM 的主要优点在于其能够捕捉游戏环境的3D结构和玩家行为的时间序列,为游戏设计和创意探索提供了强大的工具。该模型主要面向学术研究和游戏开发领域,帮助开发者快速迭代游戏设计。
Pippo 是一个从单张照片生成高分辨率多人视角视频的生成模型。
Pippo 是由 Meta Reality Labs 和多所高校合作开发的生成模型,能够从单张普通照片生成高分辨率的多人视角视频。该技术的核心优势在于无需额外输入(如参数化模型或相机参数),即可生成高质量的 1K 分辨率视频。它基于多视角扩散变换器架构,具有广泛的应用前景,如虚拟现实、影视制作等。Pippo 的代码已开源,但不包含预训练权重,用户需要自行训练模型。
Krea Chat 是一个由 DeepSeek 提供支持的 AI 聊天工具,将 Krea 的所有功能集成到聊天界面中。
Krea Chat 是一款基于 AI 的设计工具,通过聊天界面提供强大的设计功能。它结合了 DeepSeek 的 AI 技术和 Krea 的设计工具套件,用户可以通过自然语言交互生成图像、视频等设计内容。这种创新的交互方式极大地简化了设计流程,降低了设计门槛,使用户能够快速实现创意。Krea Chat 的主要优点包括易于使用、高效生成设计内容以及强大的 AI 驱动功能。它适合需要快速生成设计素材的创作者、设计师和市场营销人员,能够帮助他们节省时间并提升工作效率。
Janus Pro 是一款先进的 AI 图像生成与理解平台,提供高质量的视觉智能服务。
Janus Pro 是由 DeepSeek 技术驱动的先进 AI 图像生成与理解平台。它采用革命性的统一变换器架构,能够高效处理复杂的多模态操作,实现图像生成和理解的卓越性能。该平台训练了超过 9000 万个样本,其中包括 7200 万个合成美学数据点,确保生成的图像在视觉上具有吸引力且上下文准确。Janus Pro 为开发者和研究人员提供强大的视觉 AI 能力,帮助他们实现从创意到视觉叙事的转变。平台提供免费试用,适合需要高质量图像生成和分析的用户。
一个基于语音交互的故事创作聊天机器人,提供沉浸式的“选择你自己的冒险”体验。
该产品利用 Gemini 2.0 语言模型和 Google Imagen 图像生成技术,结合语音识别和语音合成,为用户提供一个互动式的故事创作体验。用户可以通过语音输入选择故事走向,系统会实时生成故事内容和相关图像。该产品的主要优点是创新的交互方式和强大的内容生成能力,适合用于教育、娱乐和创意启发。目前该产品处于开源阶段,未明确具体定价,主要面向开发者和教育机构。
SliderSpace 是一种用于分解扩散模型视觉能力的技术,通过直观的滑块实现对模型的可控性和可解释性。
SliderSpace 是一项创新技术,旨在提高扩散模型的可控性和可解释性。它通过自动发现模型内部的视觉知识,将其分解为直观的滑块,用户可以通过这些滑块轻松调整图像生成的方向。该技术不仅能够揭示模型对不同概念的理解,还能显著提高图像生成的多样性。SliderSpace 的主要优点包括自动化发现方向、语义正交性和分布一致性,使其成为探索和利用扩散模型视觉能力的强大工具。该技术目前处于研究阶段,尚未明确具体的价格和商业定位。
Google Imagen 3通过Gemini API开放使用,每张图像成本0.03美元,可生成多种风格图像。
Google Imagen 3是Google推出的图像生成模型,通过Gemini API向开发者开放。它能够根据用户输入的文本提示生成高质量图像,支持多种艺术风格,如超现实主义、印象派、抽象艺术等。该模型在图像细节和色彩处理上表现出色,适用于艺术创作、广告设计、游戏开发等创意工作。其主要优点包括高效的提示跟踪能力、丰富的自定义选项以及成本效益。此外,为防止误用,所有生成图像均带有不可见水印。定价为每张图像0.03美元,适合需要批量生成图像的开发者和企业。
Animagine XL 4.0 是一款专注于动漫风格的Stable Diffusion XL模型,专为生成高质量动漫图像而设计。
Animagine XL 4.0 是一款基于Stable Diffusion XL 1.0微调的动漫主题生成模型。它使用了840万张多样化的动漫风格图像进行训练,训练时长达到2650小时。该模型专注于通过文本提示生成和修改动漫主题图像,支持多种特殊标签,可控制图像生成的不同方面。其主要优点包括高质量的图像生成、丰富的动漫风格细节以及对特定角色和风格的精准还原。该模型由Cagliostro Research Lab开发,采用CreativeML Open RAIL++-M许可证,允许商业使用和修改。
Janus-Pro-7B 是一个新型的自回归框架,统一多模态理解和生成。
Janus-Pro-7B 是一个强大的多模态模型,能够同时处理文本和图像数据。它通过分离视觉编码路径,解决了传统模型在理解和生成任务中的冲突,提高了模型的灵活性和性能。该模型基于 DeepSeek-LLM 架构,使用 SigLIP-L 作为视觉编码器,支持 384x384 的图像输入,并在多模态任务中表现出色。其主要优点包括高效性、灵活性和强大的多模态处理能力。该模型适用于需要多模态交互的场景,例如图像生成和文本理解。
Janus-Pro-1B 是一个统一多模态理解和生成的自回归框架。
Janus-Pro-1B 是一个创新的多模态模型,专注于统一多模态理解和生成。它通过分离视觉编码路径,解决了传统方法在理解和生成任务中的冲突问题,同时保持了单个统一的 Transformer 架构。这种设计不仅提高了模型的灵活性,还使其在多模态任务中表现出色,甚至超越了特定任务的模型。该模型基于 DeepSeek-LLM-1.5b-base/DeepSeek-LLM-7b-base 构建,使用 SigLIP-L 作为视觉编码器,支持 384x384 的图像输入,并采用特定的图像生成 tokenizer。其开源性和灵活性使其成为下一代多模态模型的有力候选。
基于Diffusion的文本到图像生成模型,专注于时尚模特摄影风格图像生成
Fashion-Hut-Modeling-LoRA是一个基于Diffusion技术的文本到图像生成模型,主要用于生成时尚模特的高质量图像。该模型通过特定的训练参数和数据集,能够根据文本提示生成具有特定风格和细节的时尚摄影图像。它在时尚设计、广告制作等领域具有重要应用价值,能够帮助设计师和广告商快速生成创意概念图。模型目前仍在训练阶段,可能存在一些生成效果不佳的情况,但已经展示了强大的潜力。该模型的训练数据集包含14张高分辨率图像,使用了AdamW优化器和constant学习率调度器等参数,训练过程注重图像的细节和质量。
© 2025 AIbase 备案号:闽ICP备08105208号-14