需求人群:
"VFusion3D的目标受众包括3D建模师、游戏开发者、电影制作者等需要3D资产生成的专业人士。该技术为他们提供了一种快速、高效且成本较低的3D内容创建方式,尤其适合需要大量3D数据进行训练和开发的场景。"
使用场景示例:
3D建模师使用VFusion3D快速生成建筑模型
游戏开发者利用该模型为新游戏设计角色和环境
电影制作者用VFusion3D创建逼真的电影场景
产品特色:
利用预训练的视频扩散模型作为3D数据的知识源
通过微调解锁多视角生成能力
生成大规模合成多视角数据集
训练前馈3D生成模型,从单张图像生成3D资产
用户研究显示,生成结果更受用户青睐
模型性能随着数据集规模的增加而提高
可与其他技术进步相结合,实现模型的可扩展性
使用教程:
1. 准备一张用于生成3D资产的源图像
2. 使用VFusion3D模型对图像进行处理
3. 模型分析图像并生成对应的3D表示
4. 渲染出新的视角以验证3D资产的准确性
5. 根据需要调整模型参数以优化生成结果
6. 将生成的3D资产应用到相关项目中
浏览量:13
最新流量情况
月访问量
6923
平均访问时长
00:00:29
每次访问页数
1.08
跳出率
73.20%
流量来源
直接访问
39.86%
自然搜索
37.21%
邮件
0.02%
外链引荐
20.88%
社交媒体
1.60%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
瑞士
42.65%
俄罗斯
11.17%
美国
46.18%
3D生成模型的创新突破
VFusion3D是一种基于预训练的视频扩散模型构建的可扩展3D生成模型。它解决了3D数据获取困难和数量有限的问题,通过微调视频扩散模型生成大规模合成多视角数据集,训练出能够从单张图像快速生成3D资产的前馈3D生成模型。该模型在用户研究中表现出色,用户超过90%的时间更倾向于选择VFusion3D生成的结果。
3D模型动画生成
Animate3D是一个创新的框架,用于为任何静态3D模型生成动画。它的核心理念包括两个主要部分:1) 提出一种新的多视图视频扩散模型(MV-VDM),该模型基于静态3D对象的多视图渲染,并在我们提供的大规模多视图视频数据集(MV-Video)上进行训练。2) 基于MV-VDM,引入了一个结合重建和4D得分蒸馏采样(4D-SDS)的框架,利用多视图视频扩散先验来为3D对象生成动画。Animate3D通过设计新的时空注意力模块来增强空间和时间一致性,并通过多视图渲染来保持静态3D模型的身份。此外,Animate3D还提出了一个有效的两阶段流程来为3D模型生成动画:首先从生成的多视图视频中直接重建运动,然后通过引入的4D-SDS来细化外观和运动。
一种通过3D感知递归扩散生成3D模型的框架
Ouroboros3D是一个统一的3D生成框架,它将基于扩散的多视图图像生成和3D重建集成到一个递归扩散过程中。该框架通过自条件机制联合训练这两个模块,使它们能够相互适应,以实现鲁棒的推理。在多视图去噪过程中,多视图扩散模型使用由重建模块在前一时间步渲染的3D感知图作为附加条件。递归扩散框架与3D感知反馈相结合,提高了整个过程的几何一致性。实验表明,Ouroboros3D框架在性能上优于将这两个阶段分开训练的方法,以及在推理阶段将它们结合起来的现有方法。
通过交互式3D生成技术,实现高质量且可控的3D模型创建。
Interactive3D是一个先进的3D生成模型,它通过交互式设计为用户提供了精确的控制能力。该模型采用两阶段级联结构,利用不同的3D表示方法,允许用户在生成过程的任何中间步骤进行修改和引导。它的重要性在于能够实现用户对3D模型生成过程的精细控制,从而创造出满足特定需求的高质量3D模型。
用于高质量高效3D重建和生成的大型高斯重建模型
GRM是一种大规模的重建模型,能够在0.1秒内从稀疏视图图像中恢复3D资产,并且在8秒内实现生成。它是一种前馈的基于Transformer的模型,能够高效地融合多视图信息将输入像素转换为像素对齐的高斯分布,这些高斯分布可以反投影成为表示场景的密集3D高斯分布集合。我们的Transformer架构和使用3D高斯分布的方式解锁了一种可扩展、高效的重建框架。大量实验结果证明了我们的方法在重建质量和效率方面优于其他替代方案。我们还展示了GRM在生成任务(如文本到3D和图像到3D)中的潜力,通过与现有的多视图扩散模型相结合。
从单张图片生成高质量3D视图和新颖视角的3D生成技术
Stable Video 3D是Stability AI推出的新模型,它在3D技术领域取得了显著进步,与之前发布的Stable Zero123相比,提供了大幅改进的质量和多视角支持。该模型能够在没有相机条件的情况下,基于单张图片输入生成轨道视频,并且能够沿着指定的相机路径创建3D视频。
高分辨率3D内容生成的多视图高斯模型
LGM是一个用于从文本提示或单视图图像生成高分辨率3D模型的新框架。它的关键见解是:(1) 3D表示:我们提出了多视图高斯特征作为一个高效 yet 强大的表示,然后可以将其融合在一起进行不同iable 渲染。(2) 3D主干:我们呈现了一个不对称U-Net作为一个高通量的主干操作多视图图像,这可以通过利用多视图扩散模型从文本或单视图图像输入中产生。大量的实验表明了我们方法的高保真度和效率。值得注意的是,我们在将训练分辨率提高到512的同时保持生成3D对象的快速速度,从而实现了高分辨率的3D内容生成。
稳定扩散:距离快速多样的文本生成3D仅一步之遥
HexaGen3D是一种用于从文本提示生成高质量3D资产的创新方法。它利用大型预训练的2D扩散模型,通过微调预训练的文本到图像模型来联合预测6个正交投影和相应的潜在三面体,然后解码这些潜在值以生成纹理网格。HexaGen3D不需要每个样本的优化,可在7秒内从文本提示中推断出高质量且多样化的对象,相较于现有方法,提供了更好的质量与延迟权衡。此外,HexaGen3D对于新对象或组合具有很强的泛化能力。
© 2024 AIbase 备案号:闽ICP备08105208号-14