需求人群:
"CAT3D适合需要从图像快速创建3D模型的设计师、游戏开发者、动画师和任何对3D建模感兴趣的用户。"
使用场景示例:
设计师使用CAT3D从概念图创建3D原型
游戏开发者利用CAT3D将2D游戏角色转化为3D模型
动画师使用CAT3D为动画项目制作3D场景
产品特色:
输入任意数量的图像,生成新视角的场景
使用多视角扩散模型,条件化输入图像
3D重建管道,将视图转化为3D表示
交互式渲染3D模型
优化NeRF模型,提高3D模型质量
与现有技术进行比较,展示CAT3D的优势
使用教程:
访问CAT3D网站
上传任意数量的输入图像
选择多视角扩散模型进行视图生成
等待3D重建管道处理并优化NeRF模型
查看并交互渲染生成的3D模型
与现有技术进行比较,评估CAT3D的优势
浏览量:167
最新流量情况
月访问量
10.11k
平均访问时长
00:00:56
每次访问页数
1.28
跳出率
76.70%
流量来源
直接访问
53.71%
自然搜索
23.18%
邮件
0.04%
外链引荐
7.55%
社交媒体
14.68%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
美国
100.00%
从多视角图像创建3D场景
CAT3D是一个利用多视角扩散模型从任意数量的输入图像生成新视角的3D场景的网站。它通过一个强大的3D重建管道,将生成的视图转化为可交互渲染的3D表示。整个处理时间(包括视图生成和3D重建)仅需一分钟。
通过多实例扩散模型将单张图像生成高保真度的3D场景。
MIDI是一种创新的图像到3D场景生成技术,它利用多实例扩散模型,能够从单张图像中直接生成具有准确空间关系的多个3D实例。该技术的核心在于其多实例注意力机制,能够有效捕捉物体间的交互和空间一致性,无需复杂的多步骤处理。MIDI在图像到场景生成领域表现出色,适用于合成数据、真实场景数据以及由文本到图像扩散模型生成的风格化场景图像。其主要优点包括高效性、高保真度和强大的泛化能力。
将图像转换为3D模型,可用于渲染、动画或3D打印。
Shapen是一款创新的在线工具,它利用先进的图像处理和3D建模技术,将2D图像转化为详细的3D模型。这一技术对于设计师、艺术家和创意工作者来说是一个巨大的突破,因为它极大地简化了3D模型的创建过程,降低了3D建模的门槛。用户无需深厚的3D建模知识,只需上传图片,即可快速生成可用于渲染、动画制作或3D打印的模型。Shapen的出现,为创意表达和产品设计带来了全新的可能性,其定价策略和市场定位也使其成为个人创作者和小型工作室的理想选择。
灵活调整光源位置和强度的AI光照编辑工具
IC-Light V2-Vary是一款基于扩散模型的光照编辑工具,主要针对复杂光照场景中的图像生成和编辑问题,提供了光照一致性约束、大规模数据支持、精确光照编辑等功能。它通过物理光传输理论确保物体在不同光照条件下的表现可以线性组合,减少图像伪影,保持输出结果与实际物理光照条件一致。适用于摄影师、设计师及3D建模专业人士,同时为艺术创作者提供了更多可能性。
基于扩散模型的高保真服装重建虚拟试穿技术
TryOffDiff是一种基于扩散模型的高保真服装重建技术,用于从穿着个体的单张照片中生成标准化的服装图像。这项技术与传统的虚拟试穿不同,它旨在提取规范的服装图像,这在捕捉服装形状、纹理和复杂图案方面提出了独特的挑战。TryOffDiff通过使用Stable Diffusion和基于SigLIP的视觉条件来确保高保真度和细节保留。该技术在VITON-HD数据集上的实验表明,其方法优于基于姿态转移和虚拟试穿的基线方法,并且需要较少的预处理和后处理步骤。TryOffDiff不仅能够提升电子商务产品图像的质量,还能推进生成模型的评估,并激发未来在高保真重建方面的工作。
视频扩散模型,用于虚拟试穿。
Fashion-VDM是一个视频扩散模型(VDM),用于生成虚拟试穿视频。该模型接受一件衣物图片和人物视频作为输入,旨在生成人物穿着给定衣物的高质量试穿视频,同时保留人物的身份和动作。与传统的基于图像的虚拟试穿相比,Fashion-VDM在衣物细节和时间一致性方面表现出色。该技术的主要优点包括:扩散式架构、分类器自由引导增强控制、单次64帧512px视频生成的渐进式时间训练策略,以及联合图像-视频训练的有效性。Fashion-VDM在视频虚拟试穿领域树立了新的行业标准。
根据人类指令修复和编辑照片的框架
PromptFix是一个综合框架,能够使扩散模型遵循人类指令执行各种图像处理任务。该框架通过构建大规模的指令遵循数据集,提出了高频引导采样方法来控制去噪过程,并设计了辅助提示适配器,利用视觉语言模型增强文本提示,提高模型的任务泛化能力。PromptFix在多种图像处理任务中表现优于先前的方法,并在盲恢复和组合任务中展现出优越的零样本能力。
使用多照明合成的扩散方法重新照明辐射场
这是一种通过利用从2D图像扩散模型提取的先验来创建可重新照明的辐射场的方法。该方法能够将单照明条件下捕获的多视图数据转换为具有多照明效果的数据集,并通过3D高斯splats表示可重新照明的辐射场。这种方法不依赖于精确的几何形状和表面法线,因此更适合处理具有复杂几何形状和反射BRDF的杂乱场景。
构建大型世界模型,感知、生成和与3D世界互动
World Labs 是一家专注于空间智能的公司,致力于构建大型世界模型(Large World Models),以感知、生成和与3D世界进行互动。公司由AI领域的知名科学家、教授、学者和行业领导者共同创立,包括斯坦福大学的Fei-Fei Li教授、密歇根大学的Justin Johnson教授等。他们通过创新的技术和方法,如神经辐射场(NeRF)技术,推动了3D场景重建和新视角合成的发展。World Labs 得到了包括Marc Benioff、Jim Breyer等知名投资者的支持,其技术在AI领域具有重要的应用价值和商业潜力。
快速生成带纹理的3D模型
SF3D是一个基于深度学习的3D资产生成模型,它能够从单张图片中快速生成具有UV展开和材质参数的带纹理3D模型。与传统方法相比,SF3D特别针对网格生成进行了训练,集成了快速UV展开技术,能够迅速生成纹理而不是依赖顶点颜色。此外,该模型还能学习材质参数和法线贴图,以提高重建模型的视觉质量。SF3D还引入了一个去照明步骤,有效去除低频照明效果,确保重建的网格在新的照明条件下易于使用。
从单张图片生成3D角色模型
CharacterGen是一个高效的3D角色生成框架,能够从单张输入图片生成具有高质量和一致外观的3D姿势统一的角色网格。它通过流线化的生成管道和图像条件多视图扩散模型,有效校准输入姿势到规范形式,同时保留输入图像的关键属性,解决了多样化姿势带来的挑战。它还采用了基于变换器的通用稀疏视图重建模型,以及纹理反投影策略,生成高质量的纹理图。
从单张图片生成高质量3D网格模型
Unique3D是由清华大学团队开发的一项技术,能够从单张图片中生成高保真度的纹理3D网格模型。这项技术在图像处理和3D建模领域具有重要意义,它使得用户能够快速将2D图像转化为3D模型,为游戏开发、动画制作、虚拟现实等领域提供了强大的技术支持。
一种用于逆渲染的先进学习扩散先验方法,能够从任意图像中恢复物体材质并实现单视图图像重照明。
IntrinsicAnything 是一种先进的图像逆渲染技术,它通过学习扩散模型来优化材质恢复过程,解决了在未知静态光照条件下捕获的图像中物体材质恢复的问题。该技术通过生成模型学习材质先验,将渲染方程分解为漫反射和镜面反射项,利用现有丰富的3D物体数据进行训练,有效地解决了逆渲染过程中的歧义问题。此外,该技术还开发了一种从粗到细的训练策略,利用估计的材质引导扩散模型产生多视图一致性约束,从而获得更稳定和准确的结果。
一种通过计数事实数据集和自举监督实现真实物体删除和插入的方法
ObjectDrop是一种监督方法,旨在实现照片级真实的物体删除和插入。它利用了一个计数事实数据集和自助监督技术。主要功能是可以从图像中移除物体及其对场景产生的影响(如遮挡、阴影和反射),也能够将物体以极其逼真的方式插入图像。它通过在一个小型的专门捕获的数据集上微调扩散模型来实现物体删除,而对于物体插入,它采用自助监督方式利用删除模型合成大规模的计数事实数据集,在此数据集上训练后再微调到真实数据集,从而获得高质量的插入模型。相比之前的方法,ObjectDrop在物体删除和插入的真实性上有了显著提升。
CRM是一个高保真的单图像到3D纹理网格的卷积重建模型
CRM是一个高保真的单图像到3D纹理网格的生成模型,它通过整合几何先验到网络设计中,能够从单个输入图像生成六个正交视图图像,然后利用卷积U-Net创建高分辨率的三平面(triplane)。CRM进一步使用Flexicubes作为几何表示,便于在纹理网格上进行直接的端到端优化。整个模型能够在10秒内从图像生成高保真的纹理网格,无需测试时优化。
GauHuman是一个3D人体模型,利用高斯扩散进行快速训练和实时渲染。
GauHuman是一个基于高斯扩散的3D人体模型,它能在短时间内(1-2分钟)完成训练,并提供实时渲染(最高达189 FPS),与现有基于NeRF的隐式表示建模框架相比,后者需要数小时训练和每帧数秒渲染。GauHuman在规范空间对高斯扩散进行编码,并利用线性混合皮肤(LBS)将3D高斯从规范空间转换到姿态空间,在此过程中设计了有效的姿态和LBS细化模块,以微不足道的计算成本学习3D人体的细节。此外,GauHuman还通过3D人体先验初始化和修剪3D高斯,并通过KL散度引导进行拆分/克隆,以及进一步加速的新型合并操作,从而实现快速优化。
加速视频扩散模型,生成速度提升 8.5 倍。
AccVideo 是一种新颖的高效蒸馏方法,通过合成数据集加速视频扩散模型的推理速度。该模型能够在生成视频时实现 8.5 倍的速度提升,同时保持相似的性能。它使用预训练的视频扩散模型生成多条有效去噪轨迹,从而优化了数据的使用和生成过程。AccVideo 特别适用于需要高效视频生成的场景,如电影制作、游戏开发等,适合研究人员和开发者使用。
生成高质量 SVG 代码的基础模型。
StarVector 是一个先进的生成模型,旨在将图像和文本指令转化为高质量的可缩放矢量图形(SVG)代码。其主要优点在于能够处理复杂的 SVG 元素,并在各种图形风格和复杂性上表现出色。作为开放源代码资源,StarVector 推动了图形设计的创新和效率,适用于设计、插图和技术文档等多种应用场景。
实现灵活且高保真度的图像生成,同时保持身份特征。
InfiniteYou(InfU)是一个基于扩散变换器的强大框架,旨在实现灵活的图像重构,并保持用户身份。它通过引入身份特征并采用多阶段训练策略,显著提升了图像生成的质量和美学,同时改善了文本与图像的对齐。该技术对提高图像生成的相似性和美观性具有重要意义,适用于各种图像生成任务。
一种无混叠的任意尺度超分辨率方法。
Thera 是一种先进的超分辨率技术,能够在不同尺度下生成高质量图像。其主要优点在于内置物理观察模型,有效避免了混叠现象。该技术由 ETH Zurich 的研究团队开发,适用于图像增强和计算机视觉领域,尤其在遥感和摄影测量中具有广泛应用。
一款免费在线的AI工具,可快速去除照片和视频中的水印。
AI Watermark Remover 是一款基于人工智能技术的在线工具,专注于快速去除照片和视频中的水印。它利用先进的AI算法,能够精准识别并去除水印,无需复杂的编辑技能。该工具的主要优点是免费、高效且易于使用,适合需要快速清理图片和视频的用户。产品定位为简单易用的在线工具,旨在帮助用户快速恢复图片和视频的原始质量,同时保护用户隐私,不存储任何数据。
一款强大的在线AI图像生成与编辑工具,提供多种图像处理功能。
Picture AI 是一个基于人工智能的在线图像生成和编辑平台,它利用先进的AI技术帮助用户轻松创建和优化图像。该平台的主要优点是操作简单、功能多样且完全在线,无需下载或安装任何软件。它适用于各种用户,包括设计师、摄影师、普通用户等,能够满足从创意设计到日常图像处理的多种需求。目前该平台提供免费试用,用户可以根据自己的需求选择不同的功能和服务。
通过扩散模型实现单目视频的相机轨迹重定向。
TrajectoryCrafter 是一种先进的相机轨迹重定向工具,利用扩散模型技术,将单目视频中的相机运动重新设计,提升视频的表现力和视觉吸引力。该技术可广泛应用于影视制作和虚拟现实等领域,具备高效、便捷和创新的特点,旨在为用户提供更多创意自由和控制能力。
Inception Labs 推出新一代扩散式大语言模型,提供极速、高效和高质量的语言生成能力。
Inception Labs 是一家专注于开发扩散式大语言模型(dLLMs)的公司。其技术灵感来源于先进的图像和视频生成系统,如 Midjourney 和 Sora。通过扩散模型,Inception Labs 提供了比传统自回归模型快 5-10 倍的速度、更高的效率和更强的生成控制能力。其模型支持并行文本生成,能够纠正错误和幻觉,适合多模态任务,并且在推理和结构化数据生成方面表现出色。公司由斯坦福、UCLA 和康奈尔大学的研究人员和工程师组成,是扩散模型领域的先驱。
HunyuanVideo-I2V 是腾讯推出的基于 HunyuanVideo 的图像到视频生成框架。
HunyuanVideo-I2V 是腾讯开源的图像到视频生成模型,基于 HunyuanVideo 架构开发。该模型通过图像潜在拼接技术,将参考图像信息有效整合到视频生成过程中,支持高分辨率视频生成,并提供可定制的 LoRA 效果训练功能。该技术在视频创作领域具有重要意义,能够帮助创作者快速生成高质量的视频内容,提升创作效率。
Project Starlight 是一款基于 AI 的视频增强工具,可将低分辨率和损坏的视频提升为高清质量。
Project Starlight 是 Topaz Labs 推出的一款 AI 视频增强模型,专为提升低分辨率和损坏视频的质量而设计。它采用了扩散模型技术,能够实现视频的超分辨率、降噪、去模糊和锐化等功能,同时保持时间一致性,确保视频帧之间的流畅过渡。该技术是视频增强领域的重大突破,为视频修复和提升带来了前所未有的高质量效果。目前,Project Starlight 提供免费试用,并计划在未来支持 4K 导出,主要面向需要高质量视频修复和增强的用户和企业。
© 2025 AIbase 备案号:闽ICP备08105208号-14