需求人群:
"艺术家、设计师、教育工作者和研究人员。SV4D 可以帮助他们生成新的视角视频,用于艺术创作、设计展示或教育演示。"
使用场景示例:
艺术家使用 SV4D 生成不同视角的雕塑视频,用于艺术展览。
设计师利用该模型生成产品的多视角展示视频,提升产品展示效果。
教育工作者使用 SV4D 生成复杂科学概念的多视角视频,帮助学生更好地理解。
产品特色:
生成 40 帧的 4D 图像矩阵,分辨率为 576x576。
使用 SV3D 生成轨道视频,作为 SV4D 的参考视图。
输入视频作为参考帧,进行 4D 采样。
生成更长的新视角视频,通过密集采样(插值)剩余帧。
适用于生成艺术作品和设计过程。
应用于教育或创意工具。
用于生成模型的研究,包括理解生成模型的局限性。
使用教程:
1. 准备 5 个参考帧的视频,分辨率为 576x576。
2. 使用 SV3D 模型生成轨道视频,作为 SV4D 的参考视图。
3. 将轨道视频和输入视频作为参考帧,输入 SV4D 模型。
4. 运行 SV4D 模型,生成 4D 图像矩阵。
5. 根据需要,使用生成的第一帧作为锚点,进行密集采样(插值)生成更长的新视角视频。
6. 检查生成的视频是否符合预期效果,进行必要的调整。
7. 将生成的视频应用于艺术创作、设计展示或教育演示中。
浏览量:96
最新流量情况
月访问量
25296.55k
平均访问时长
00:04:45
每次访问页数
5.83
跳出率
43.31%
流量来源
直接访问
48.39%
自然搜索
35.85%
邮件
0.03%
外链引荐
12.76%
社交媒体
2.96%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
17.08%
印度
8.40%
日本
3.42%
俄罗斯
4.58%
美国
17.94%
生成多视角视频的模型
Stable Video 4D (SV4D) 是基于 Stable Video Diffusion (SVD) 和 Stable Video 3D (SV3D) 的生成模型,它接受单一视角的视频并生成该对象的多个新视角视频(4D 图像矩阵)。该模型训练生成 40 帧(5 个视频帧 x 8 个摄像机视角)在 576x576 分辨率下,给定 5 个相同大小的参考帧。通过运行 SV3D 生成轨道视频,然后使用轨道视频作为 SV4D 的参考视图,并输入视频作为参考帧,进行 4D 采样。该模型还通过使用生成的第一帧作为锚点,然后密集采样(插值)剩余帧来生成更长的新视角视频。
一种新的文本条件高分辨率生成模型
Phased Consistency Model(PCM)是一种新型的生成模型,旨在解决Latent Consistency Model(LCM)在文本条件高分辨率生成中的局限性。PCM通过创新的策略在训练和推理阶段提高了生成质量,并通过广泛的实验验证了其在不同步骤(1步、2步、4步、8步、16步)下与Stable Diffusion和Stable Diffusion XL基础模型的结合效果。
基于文本提示生成物理稳定且可组装的乐高设计。
LegoGPT 是第一个通过文本提示生成物理稳定的乐高模型的方法。该技术使用大规模的乐高设计数据集,并通过自回归语言模型生成下一个乐高砖块,同时应用物理约束以保证模型的稳定性。其主要优点包括生成多样且美观的设计,支持人工和机器人组装,并具备自动化生成和纹理上色能力。
通过音频扩散模型实现源分离和合成的创新方法。
Audio-SDS 是一个将 Score Distillation Sampling(SDS)概念应用于音频扩散模型的框架。该技术能够在不需要专门数据集的情况下,利用大型预训练模型进行多种音频任务,如物理引导的冲击声合成和基于提示的源分离。其主要优点在于通过一系列迭代优化,使得复杂的音频生成任务变得更为高效。此技术具有广泛的应用前景,能够为未来的音频生成和处理研究提供坚实基础。
多模态驱动的定制视频生成架构。
HunyuanCustom 是一个多模态定制视频生成框架,旨在根据用户定义的条件生成特定主题的视频。该技术在身份一致性和多种输入模式的支持上表现出色,能够处理文本、图像、音频和视频输入,适合虚拟人广告、视频编辑等多种应用场景。
通过 MCP 协议访问 PixVerse 最新的视频生成模型。
PixVerse-MCP 是一个工具,允许用户通过支持模型上下文协议(MCP)的应用程序访问 PixVerse 最新的视频生成模型。该产品提供了文本转视频等功能,适用于创作者和开发者,能够在任何地方生成高质量的视频。PixVerse 平台需要 API 积分,用户需自行购买。
一个互动故事讲述的 AI 平台,通过图像和音频生成视频。
AvatarFX 是一个尖端的 AI 平台,专注于互动故事讲述。用户可以通过上传图片和选择声音,快速生成生动、真实的角色视频。其核心技术是基于 DiT 的扩散视频生成模型,能够高效生成高保真、时序一致的视频,特别适合需要多个角色和对话场景的创作。产品定位在为创作者提供工具,帮助他们实现想象力的无限可能。
国产视频生成大模型 Vidu Q1,支持高清 1080p 视频生成,性价比极高。
Vidu Q1 是由生数科技推出的国产视频生成大模型,专为视频创作者设计,支持高清 1080p 视频生成,具备电影级运镜效果和首尾帧功能。该产品在 VBench-1.0 和 VBench-2.0 评测中位居榜首,性价比极高,价格仅为同行的十分之一。它适用于电影、广告、动漫等多个领域,能够大幅降低创作成本,提升创作效率。
全球首个无限时长电影生成模型,开启视频生成新时代
SkyReels-V2 是昆仑万维 SkyReels 团队发布的全球首个使用扩散强迫框架的无限时长电影生成模型。该模型通过结合多模态大语言模型、多阶段预训练、强化学习和扩散强迫框架来实现协同优化,突破了传统视频生成技术在提示词遵循、视觉质量、运动动态和视频时长协调上的重大挑战。它不仅为内容创作者提供了强大的工具,还开启了利用 AI 进行视频叙事和创意表达的无限可能。
开源视频生成模型,支持多种生成任务。
Wan2.1-FLF2V-14B 是一个开源的大规模视频生成模型,旨在推动视频生成领域的进步。该模型在多项基准测试中表现优异,支持消费者级 GPU,能够高效生成 480P 和 720P 的视频。它在文本到视频、图像到视频等多个任务中表现出色,具有强大的视觉文本生成能力,适用于各种实际应用场景。
用于视频生成的下一帧预测模型。
FramePack 是一个创新的视频生成模型,旨在通过压缩输入帧的上下文来提高视频生成的质量和效率。其主要优点在于解决了视频生成中的漂移问题,通过双向采样方法保持视频质量,适合需要生成长视频的用户。该技术背景来源于对现有模型的深入研究和实验,以改进视频生成的稳定性和连贯性。
一个集成视觉理解和生成的多模态生成模型。
Liquid 是一个自回归生成模型,通过将图像分解为离散代码并与文本标记共享特征空间,促进视觉理解和文本生成的无缝集成。此模型的主要优点在于无需外部预训练的视觉嵌入,减少了对资源的依赖,同时通过规模法则发现了理解与生成任务之间的相互促进效应。
Pusa 是一个新颖的视频扩散模型,支持多种视频生成任务。
Pusa 通过帧级噪声控制引入视频扩散建模的创新方法,能够实现高质量的视频生成,适用于多种视频生成任务(文本到视频、图像到视频等)。该模型以其卓越的运动保真度和高效的训练过程,提供了一个开源的解决方案,方便用户进行视频生成任务。
一款通过生成模型提升图像生成一致性的工具。
UNO 是一个基于扩散变换器的多图像条件生成模型,通过引入渐进式跨模态对齐和通用旋转位置嵌入,实现高一致性的图像生成。其主要优点在于增强了对单一或多个主题生成的可控性,适用于各种创意图像生成任务。
在视频扩散变换器中合成任何内容的框架。
SkyReels-A2 是一个基于视频扩散变换器的框架,允许用户合成和生成视频内容。该模型通过利用深度学习技术,提供了灵活的创作能力,适合多种视频生成应用,尤其是在动画和特效制作方面。该产品的优点在于其开源特性和高效的模型性能,适合研究人员和开发者使用,且目前不收取费用。
OmniTalker 是一个实时文本驱动的生成谈话头框架。
OmniTalker 是由阿里巴巴 Tongyi 实验室提出的一种统一框架,旨在实时生成音频和视频,提升人机交互体验。其创新之处在于解决了传统文本到语音及语音驱动的视频生成方法中常见的音视频不同步、风格不一致及系统复杂性等问题。OmniTalker 采用双分支扩散变换器架构,能够在保持高效的同时实现高保真的音视频输出。其实时推理速度可达每秒 25 帧,适用于各种交互式视频聊天应用,提升了用户体验。
为 Diffusion Transformer 提供高效灵活的控制框架。
EasyControl 是一个为 Diffusion Transformer(扩散变换器)提供高效灵活控制的框架,旨在解决当前 DiT 生态系统中存在的效率瓶颈和模型适应性不足等问题。其主要优点包括:支持多种条件组合、提高生成灵活性和推理效率。该产品是基于最新研究成果开发的,适合在图像生成、风格转换等领域使用。
基于 DiT 的人类图像动画框架,实现精细控制与长效一致性。
DreamActor-M1 是一个基于扩散变换器 (DiT) 的人类动画框架,旨在实现细粒度的整体可控性、多尺度适应性和长期时间一致性。该模型通过混合引导,能够生成高表现力和真实感的人类视频,适用于从肖像到全身动画的多种场景。其主要优势在于高保真度和身份保留,为人类行为动画带来了新的可能性。
GAIA-2 是一个先进的视频生成模型,用于创建安全的自动驾驶场景。
GAIA-2 是 Wayve 开发的先进视频生成模型,旨在为自动驾驶系统提供多样化和复杂的驾驶场景,以提高安全性和可靠性。该模型通过生成合成数据来解决依赖现实世界数据收集的限制,能够创建各种驾驶情境,包括常规和边缘案例。GAIA-2 支持多种地理和环境条件的模拟,帮助开发者在没有高昂成本的情况下快速测试和验证自动驾驶算法。
加速视频扩散模型,生成速度提升 8.5 倍。
AccVideo 是一种新颖的高效蒸馏方法,通过合成数据集加速视频扩散模型的推理速度。该模型能够在生成视频时实现 8.5 倍的速度提升,同时保持相似的性能。它使用预训练的视频扩散模型生成多条有效去噪轨迹,从而优化了数据的使用和生成过程。AccVideo 特别适用于需要高效视频生成的场景,如电影制作、游戏开发等,适合研究人员和开发者使用。
通过测试时间缩放显著提升视频生成质量。
Video-T1 是一个视频生成模型,通过测试时间缩放技术(TTS)显著提升生成视频的质量和一致性。该技术允许在推理过程中使用更多的计算资源,从而优化生成结果。相较于传统的视频生成方法,TTS 能够提供更高的生成质量和更丰富的内容表达,适用于数字创作领域。该产品的定位主要面向研究人员和开发者,价格信息未明确。
免费 AI 创作工具,生成图像、视频及 4K 增强。
vivago.ai 是一个免费的 AI 生成工具和社区,提供文本转图像、图像转视频等功能,让创作变得更加简单高效。用户可以免费生成高质量的图像和视频,支持多种 AI 编辑工具,方便用户进行创作和分享。该平台的定位是为广大创作者提供易用的 AI 工具,满足他们在视觉创作上的需求。
一种提升场景级视频生成能力的技术。
长上下文调优(LCT)旨在解决当前单次生成能力与现实叙事视频制作之间的差距。该技术通过数据驱动的方法直接学习场景级一致性,支持交互式多镜头开发和合成生成,适用于视频制作的各个方面。
Inductive Moment Matching 是一种新型的生成模型,用于高质量图像生成。
Inductive Moment Matching (IMM) 是一种先进的生成模型技术,主要用于高质量图像生成。该技术通过创新的归纳矩匹配方法,显著提高了生成图像的质量和多样性。其主要优点包括高效性、灵活性以及对复杂数据分布的强大建模能力。IMM 由 Luma AI 和斯坦福大学的研究团队开发,旨在推动生成模型领域的发展,为图像生成、数据增强和创意设计等应用提供强大的技术支持。该项目开源了代码和预训练模型,方便研究人员和开发者快速上手和应用。
通过多实例扩散模型将单张图像生成高保真度的3D场景。
MIDI是一种创新的图像到3D场景生成技术,它利用多实例扩散模型,能够从单张图像中直接生成具有准确空间关系的多个3D实例。该技术的核心在于其多实例注意力机制,能够有效捕捉物体间的交互和空间一致性,无需复杂的多步骤处理。MIDI在图像到场景生成领域表现出色,适用于合成数据、真实场景数据以及由文本到图像扩散模型生成的风格化场景图像。其主要优点包括高效性、高保真度和强大的泛化能力。
MM_StoryAgent 是一个多智能体框架,用于生成沉浸式故事视频。
MM_StoryAgent 是一个基于多智能体范式的故事视频生成框架,它结合了文本、图像和音频等多种模态,通过多阶段流程生成高质量的故事视频。该框架的核心优势在于其可定制性,用户可以自定义专家工具以提升每个组件的生成质量。此外,它还提供了故事主题列表和评估标准,便于进一步的故事创作和评估。MM_StoryAgent 主要面向需要高效生成故事视频的创作者和企业,其开源特性使得用户可以根据自身需求进行扩展和优化。
一款用于生成无线条、扁平色彩风格图像和视频的LoRA模型,适用于动漫和设计领域。
Flat Color - Style是一款专为生成扁平色彩风格图像和视频设计的LoRA模型。它基于Wan Video模型训练,具有独特的无线条、低深度效果,适合用于动漫、插画和视频生成。该模型的主要优点是能够减少色彩渗出,增强黑色表现力,同时提供高质量的视觉效果。它适用于需要简洁、扁平化设计的场景,如动漫角色设计、插画创作和视频制作。该模型是免费提供给用户使用的,旨在帮助创作者快速实现具有现代感和简洁风格的视觉作品。
Wan_AI Creative Drawing 是一个利用人工智能技术进行创意绘画和视频创作的平台。
Wan_AI Creative Drawing 是一个基于人工智能技术的创意绘画和视频创作平台。它通过先进的AI模型,能够根据用户输入的文字描述生成独特的艺术作品和视频内容。这种技术不仅降低了艺术创作的门槛,还为创意工作者提供了强大的工具。产品主要面向创意专业人士、艺术家和普通用户,帮助他们快速实现创意想法。目前,该平台可能提供免费试用或付费使用,具体价格和定位需进一步确认。
© 2025 AIbase 备案号:闽ICP备08105208号-14