需求人群:
"艺术家、设计师、教育工作者和研究人员。SV4D 可以帮助他们生成新的视角视频,用于艺术创作、设计展示或教育演示。"
使用场景示例:
艺术家使用 SV4D 生成不同视角的雕塑视频,用于艺术展览。
设计师利用该模型生成产品的多视角展示视频,提升产品展示效果。
教育工作者使用 SV4D 生成复杂科学概念的多视角视频,帮助学生更好地理解。
产品特色:
生成 40 帧的 4D 图像矩阵,分辨率为 576x576。
使用 SV3D 生成轨道视频,作为 SV4D 的参考视图。
输入视频作为参考帧,进行 4D 采样。
生成更长的新视角视频,通过密集采样(插值)剩余帧。
适用于生成艺术作品和设计过程。
应用于教育或创意工具。
用于生成模型的研究,包括理解生成模型的局限性。
使用教程:
1. 准备 5 个参考帧的视频,分辨率为 576x576。
2. 使用 SV3D 模型生成轨道视频,作为 SV4D 的参考视图。
3. 将轨道视频和输入视频作为参考帧,输入 SV4D 模型。
4. 运行 SV4D 模型,生成 4D 图像矩阵。
5. 根据需要,使用生成的第一帧作为锚点,进行密集采样(插值)生成更长的新视角视频。
6. 检查生成的视频是否符合预期效果,进行必要的调整。
7. 将生成的视频应用于艺术创作、设计展示或教育演示中。
浏览量:98
最新流量情况
月访问量
25296.55k
平均访问时长
00:04:45
每次访问页数
5.83
跳出率
43.31%
流量来源
直接访问
48.39%
自然搜索
35.85%
邮件
0.03%
外链引荐
12.76%
社交媒体
2.96%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.77%
印度
8.48%
日本
3.85%
俄罗斯
4.86%
美国
17.58%
生成多视角视频的模型
Stable Video 4D (SV4D) 是基于 Stable Video Diffusion (SVD) 和 Stable Video 3D (SV3D) 的生成模型,它接受单一视角的视频并生成该对象的多个新视角视频(4D 图像矩阵)。该模型训练生成 40 帧(5 个视频帧 x 8 个摄像机视角)在 576x576 分辨率下,给定 5 个相同大小的参考帧。通过运行 SV3D 生成轨道视频,然后使用轨道视频作为 SV4D 的参考视图,并输入视频作为参考帧,进行 4D 采样。该模型还通过使用生成的第一帧作为锚点,然后密集采样(插值)剩余帧来生成更长的新视角视频。
通过文本生成高质量AI视频
Sora视频生成器是一个可以通过文本生成高质量AI视频的在线网站。用户只需要输入想要生成视频的文本描述,它就可以使用OpenAI的Sora AI模型,转换成逼真的视频。网站还提供了丰富的视频样例,详细的使用指南和定价方案等。
创新的AI视频生成器,快速实现创意视频。
Luma AI的Dream Machine是一款AI视频生成器,它利用先进的AI技术,将用户的想法转化为高质量、逼真的视频。它支持从文字描述或图片开始生成视频,具有高度的可扩展性、快速生成能力和实时访问功能。产品界面用户友好,适合专业人士和创意爱好者使用。Luma AI的Dream Machine不断更新,以保持技术领先,为用户提供持续改进的视频生成体验。
Freepik AI 视频生成器,基于人工智能技术快速生成高质量视频内容。
Freepik AI 视频生成器是一款基于人工智能技术的在线工具,能够根据用户输入的初始图像或描述快速生成视频。该技术利用先进的 AI 算法,实现视频内容的自动化生成,极大地提高了视频创作的效率。产品定位为创意设计人员和视频制作者提供快速、高效的视频生成解决方案,帮助用户节省时间和精力。目前该工具处于 Beta 测试阶段,用户可以免费试用其功能。
多视角视频生成同步技术
SynCamMaster是一种先进的视频生成技术,它能够从多样化的视角同步生成多摄像机视频。这项技术通过预训练的文本到视频模型,增强了视频内容在不同视角下的动态一致性,对于虚拟拍摄等应用场景具有重要意义。该技术的主要优点包括能够处理开放世界视频的任意视角生成,整合6自由度摄像机姿态,并设计了一种渐进式训练方案,利用多摄像机图像和单目视频作为补充,显著提升了模型性能。
利用AI技术快速生成视频内容
AI视频生成神器是一款利用人工智能技术,将图片或文字转换成视频内容的在线工具。它通过深度学习算法,能够理解图片和文字的含义,自动生成具有吸引力的视频内容。这种技术的应用,极大地降低了视频制作的成本和门槛,使得普通用户也能轻松制作出专业级别的视频。产品背景信息显示,随着社交媒体和视频平台的兴起,用户对视频内容的需求日益增长,而传统的视频制作方式成本高、耗时长,难以满足快速变化的市场需求。AI视频生成神器的出现,正好填补了这一市场空白,为用户提供了一种快速、低成本的视频制作解决方案。目前,该产品提供免费试用,具体价格需要在网站上查询。
基于 AI 技术生成视频内容的智能服务。
清影 AI 视频生成服务是一个创新的人工智能平台,旨在通过智能算法生成高质量的视频内容。该服务适合各种行业用户,能够快速便捷地生成富有创意的视觉内容。无论是商业广告、教育课程还是娱乐视频,清影 AI 都能提供优质的解决方案。该产品依托于先进的 GLM 大模型,确保生成内容的准确性与丰富性,同时满足用户个性化需求。提供免费试用,鼓励用户探索 AI 视频创作的无限可能。
使用简单的提示和图像生成视频片段。
Adobe Firefly 是一款基于人工智能技术的视频生成工具。它能够根据用户提供的简单提示或图像快速生成高质量的视频片段。该技术利用先进的 AI 算法,通过对大量视频数据的学习和分析,实现自动化的视频创作。其主要优点包括操作简单、生成速度快、视频质量高。Adobe Firefly 面向创意工作者、视频制作者以及需要快速生成视频内容的用户,提供高效、便捷的视频创作解决方案。目前该产品处于 Beta 测试阶段,用户可以免费使用,未来可能会根据市场需求和产品发展进行定价和定位。
利用AI技术,将文字和图像转化为创意视频。
通义万相AI创意作画是一款利用人工智能技术,将用户的文字描述或图像转化为视频内容的产品。它通过先进的AI算法,能够理解用户的创意意图,自动生成具有艺术感的视频。该产品不仅能够提升内容创作的效率,还能激发用户的创造力,适用于广告、教育、娱乐等多个领域。
AI驱动的视频生成工具,一键生成高质量营销视频
小视频宝(ClipTurbo)是一个AI驱动的视频生成工具,旨在帮助用户轻松创建高质量的营销视频。该工具利用AI技术处理文案、翻译、图标匹配和TTS语音合成,最终使用manim渲染视频,避免了纯生成式AI被平台限流的问题。小视频宝支持多种模板,用户可以根据需要选择分辨率、帧率、宽高比或屏幕方向,模板将自动适配。此外,它还支持多种语音服务,包括内置的EdgeTTS语音。目前,小视频宝仍处于早期开发阶段,仅提供给三花AI的注册用户。
AI视频创作工具,将老照片转化为动态视频。
京亦智能AI视频生成神器是一款利用人工智能技术,将静态的老照片转化为动态视频的产品。它结合了深度学习和图像处理技术,使得用户能够轻松地将珍贵的老照片复活,创造出具有纪念意义的视频内容。该产品的主要优点包括操作简便、效果逼真、个性化定制等。它不仅能够满足个人用户对于家庭影像资料的整理和创新需求,也能为商业用户提供一种新颖的营销和宣传方式。目前,该产品提供免费试用,具体价格和定位信息需进一步了解。
统一多模态视频生成系统
UniVG是一款统一多模态视频生成系统,能够处理多种视频生成任务,包括文本和图像模态。通过引入多条件交叉注意力和偏置高斯噪声,实现了高自由度和低自由度视频生成。在公共学术基准MSR-VTT上实现了最低的Fr'echet视频距离(FVD),超越了当前开源方法在人类评估上的表现,并与当前闭源方法Gen2不相上下。
开源视频生成模型
Mochi 1 是 Genmo 公司推出的一款研究预览版本的开源视频生成模型,它致力于解决当前AI视频领域的基本问题。该模型以其无与伦比的运动质量、卓越的提示遵循能力和跨越恐怖谷的能力而著称,能够生成连贯、流畅的人类动作和表情。Mochi 1 的开发背景是响应对高质量视频内容生成的需求,特别是在游戏、电影和娱乐行业中。产品目前提供免费试用,具体定价信息未在页面中提供。
控制视频生成模型
传统的3D内容创作工具赋予用户直接控制场景的几何形状、外观、动作和摄像机路径,从而将他们的想象变为现实。然而,创建计算机生成的视频是一个繁琐的手动过程,可以通过新兴的文本到视频扩散模型实现自动化。尽管前景广阔,视频扩散模型难以控制,限制了用户应用自己的创造力,而不是放大它。为了解决这一挑战,我们提出了一种新颖的方法,将动态3D网格的可控性与新兴扩散模型的表现力和可编辑性相结合。为此,我们的方法以动画化的低保真度渲染网格作为输入,并将从动态网格获得的地面真实对应信息注入预训练的文本到图像生成模型的各个阶段,以输出高质量和时间一致的帧。我们在各种示例上演示了我们的方法,其中动作可以通过对绑定资产进行动画化或改变摄像机路径来获得。
AI赋能的短视频生产平台,批量生成多样化视频内容。
Giga视频超级工厂是一款基于AI技术,融合多项智能能力的视频生产平台。它通过智能化技术和工业化生产线,实现短视频的批量生产,让创意快速变为现实。产品具备视频生视频、图文生视频、报纸生视频以及视频智能翻译等功能,适用于新闻报道、企业宣传、活动推广等多种场景,助力用户高效制作并传播视频内容。
高效率自回归视频生成模型
Pyramid Flow miniFLUX是一个基于流匹配的自回归视频生成方法,专注于训练效率和开源数据集的使用。该模型能够生成高质量的10秒768p分辨率、24帧每秒的视频,并自然支持图像到视频的生成。它是视频内容创作和研究领域的一个重要工具,尤其在需要生成连贯动态图像的场合。
大规模视频生成扩散模型
Sora是一个基于大规模训练的文本控制视频生成扩散模型。它能够生成长达1分钟的高清视频,涵盖广泛的视觉数据类型和分辨率。Sora通过在视频和图像的压缩潜在空间中训练,将其分解为时空位置补丁,实现了可扩展的视频生成。Sora还展现出一些模拟物理世界和数字世界的能力,如三维一致性和交互,揭示了继续扩大视频生成模型规模来发展高能力模拟器的前景。
多模态驱动的定制视频生成架构。
HunyuanCustom 是一个多模态定制视频生成框架,旨在根据用户定义的条件生成特定主题的视频。该技术在身份一致性和多种输入模式的支持上表现出色,能够处理文本、图像、音频和视频输入,适合虚拟人广告、视频编辑等多种应用场景。
开源视频生成模型
genmoai/models 是一个开源的视频生成模型,代表了视频生成技术的最新进展。该模型名为 Mochi 1,是一个基于 Asymmetric Diffusion Transformer (AsymmDiT) 架构的10亿参数扩散模型,从零开始训练,是迄今为止公开发布的最大的视频生成模型。它具有高保真运动和强提示遵循性,显著缩小了封闭和开放视频生成系统之间的差距。该模型在 Apache 2.0 许可下发布,用户可以在 Genmo 的 playground 上免费试用此模型。
基于文本描述实现多尺度连续缩放视频生成。
Generative Powers of Ten是一种利用文本到图像模型生成多尺度一致内容的方法,能够实现对场景的极端语义缩放,例如从森林的广角景观视图到树枝上昆虫的微距拍摄。这种表示方式使我们能够渲染连续缩放视频,或者交互式地探索场景的不同尺度。我们通过一种联合多尺度扩散采样方法实现这一点,该方法鼓励在不同尺度之间保持一致性,同时保留每个单独采样过程的完整性。由于每个生成的尺度都由不同的文本提示指导,我们的方法能够实现比传统的超分辨率方法更深层次的缩放,后者可能难以在完全不同的尺度上创建新的上下文结构。我们在图像超分辨率和外部绘制的替代技术上对我们的方法进行了定性比较,并表明我们的方法在生成一致的多尺度内容方面最为有效。
视频生成的前沿模型
WorldDreamer是一个创新的视频生成模型,它通过预测遮蔽的视觉令牌来理解并模拟世界动态。它在图像到视频合成、文本到视频生成、视频修复、视频风格化以及动作到视频生成等多个方面表现出色。该模型借鉴了大型语言模型的成功经验,将世界建模视为一个无监督的视觉序列建模挑战,通过将视觉输入映射到离散的令牌并预测被遮蔽的令牌来实现。
文本到视频生成的开源模型,性能卓越。
Open-Sora-Plan是一个由北京大学元组团队开发的文本到视频生成模型。它在2024年4月首次推出v1.0.0版本,以其简单高效的设计和显著的性能在文本到视频生成领域获得了广泛认可。v1.1.0版本在视频生成质量和持续时间上进行了显著改进,包括更优的压缩视觉表示、更高的生成质量和更长的视频生成能力。该模型采用了优化的CausalVideoVAE架构,具有更强的性能和更高的推理效率。此外,它还保持了v1.0.0版本的极简设计和数据效率,并且与Sora基础模型的性能相似,表明其版本演进与Sora展示的扩展法则一致。
开源视频生成模型,支持多种生成任务。
Wan2.1-FLF2V-14B 是一个开源的大规模视频生成模型,旨在推动视频生成领域的进步。该模型在多项基准测试中表现优异,支持消费者级 GPU,能够高效生成 480P 和 720P 的视频。它在文本到视频、图像到视频等多个任务中表现出色,具有强大的视觉文本生成能力,适用于各种实际应用场景。
多模态多视角视频数据集和基准挑战
Ego-Exo4D 是一个多模态多视角视频数据集和基准挑战,以捕捉技能人类活动的自我中心和外部中心视频为中心。它支持日常生活活动的多模态机器感知研究。该数据集由 839 位佩戴摄像头的志愿者在全球 13 个城市收集,捕捉了 1422 小时的技能人类活动视频。该数据集提供了专家评论、参与者提供的教程样式的叙述和一句话的原子动作描述等三种自然语言数据集,配对视频使用。Ego-Exo4D 还捕获了多视角和多种感知模态,包括多个视角、七个麦克风阵列、两个 IMUs、一个气压计和一个磁强计。数据集记录时严格遵守隐私和伦理政策,参与者的正式同意。欲了解更多信息,请访问官方网站。
多主题文本生成视频定制
CustomVideo是一个新颖的框架,旨在生成在多个主题引导下保持身份的视频。该产品首先鼓励多个主题的共同出现,然后通过基本的文本到视频扩散模型设计了一个简单而有效的注意力控制策略,以在扩散模型的潜在空间中解开不同的主题。此外,该产品还通过从给定的参考图像中分割对象并为注意力学习提供相应的对象掩码,帮助模型专注于特定的对象区域。同时,他们还收集了一个多主题文本到视频生成数据集作为全面的基准,其中包括69个个体主题和57个有意义的对。大量的定性、定量和用户研究结果表明,与先前的最先进方法相比,我们的方法具有显著优势。
文本图像到视频生成模型
Allegro-TI2V是一个文本图像到视频生成模型,它能够根据用户提供的提示和图像生成视频内容。该模型以其开源性、多样化的内容创作能力、高质量的输出、小巧高效的模型参数以及支持多种精度和GPU内存优化而受到关注。它代表了当前人工智能技术在视频生成领域的前沿进展,具有重要的技术价值和商业应用潜力。Allegro-TI2V模型在Hugging Face平台上提供,遵循Apache 2.0开源协议,用户可以免费下载和使用。
AI视频生成工具
Sora AI Video Generator是一款用于生成AI视频的工具。它可以根据提供的文本内容,自动合成出高质量的视频。该工具具有智能视频编辑、自动配乐、特效添加等功能,可以满足用户在影视制作、广告制作、社交媒体营销等领域的需求。定价方面,请访问官方网站了解详情。
内容一致的多场景视频生成
VideoDrafter 是一个内容一致的多场景视频生成框架。它利用大型语言模型(LLM)将输入提示转换为包含多场景脚本的综合脚本,脚本包括描述事件、前景 / 背景实体以及相机运动的提示。VideoDrafter 识别脚本中的共同实体,并要求 LLM 对每个实体进行详细描述。然后,将每个实体的描述输入到文本到图像模型中,以生成每个实体的参考图像。最后,通过考虑参考图像、事件描述和相机运动,通过扩散过程生成多场景视频,扩散模型将参考图像作为条件和对齐进行处理,以增强多场景视频的内容一致性。
一张图生成多视角扩散基础模型
Zero123++是一个单图生成多视角一致性扩散基础模型。它可以从单个输入图像生成多视角图像,具有稳定的扩散VAE。您可以使用它来生成具有灰色背景的不透明图像。您还可以使用它来运行深度ControlNet。模型和源代码均可在官方网站上获得。
© 2025 AIbase 备案号:闽ICP备08105208号-14