需求人群:
"目标受众主要是3D艺术家、游戏开发者、电影制作人员以及任何需要快速生成高质量3D内容的用户。Flex3D简化了3D内容的创建过程,使得非专业人士也能轻松创建3D模型。"
使用场景示例:
游戏开发者使用Flex3D快速生成游戏内3D环境。
电影制作人员利用Flex3D从概念艺术生成3D场景。
3D艺术家使用Flex3D从草图创建详细的3D角色模型。
产品特色:
两阶段生成流程:先进行灵活重建,再进行输入视图筛选。
高保真3D重建:从单张图片生成高质量的3D模型。
灵活的重建模型:能够处理各种复杂场景和物体。
输入视图筛选:优化生成结果,提高3D资产的质量。
交互式结果展示:用户可以通过交互式界面探索生成结果。
支持文本提示:用户可以通过文本描述来指导3D资产的生成。
使用教程:
访问Flex3D的官方网站。
根据提示上传单张图片或输入文本提示。
选择生成3D资产的参数和选项。
点击生成按钮,等待模型生成。
在交互式界面中查看和调整生成的3D资产。
下载生成的3D资产,用于进一步的编辑或直接使用。
浏览量:79
最新流量情况
月访问量
1168
平均访问时长
00:00:00
每次访问页数
1.00
跳出率
74.24%
流量来源
直接访问
43.76%
自然搜索
26.23%
邮件
0.05%
外链引荐
13.99%
社交媒体
15.06%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
乌克兰
4.05%
美国
95.95%
从单张图片重建逼真的3D人体模型
PSHuman是一个创新的框架,它利用多视图扩散模型和显式重构技术,从单张图片中重建出逼真的3D人体模型。这项技术的重要性在于它能够处理复杂的自遮挡问题,并且在生成的面部细节上避免了几何失真。PSHuman通过跨尺度扩散模型联合建模全局全身形状和局部面部特征,实现了细节丰富且保持身份特征的新视角生成。此外,PSHuman还通过SMPL-X等参数化模型提供的身体先验,增强了不同人体姿态下的跨视图身体形状一致性。PSHuman的主要优点包括几何细节丰富、纹理保真度高以及泛化能力强。
从单张图片或文本提示生成高质量3D资产
Flex3D是一个两阶段流程,能够从单张图片或文本提示生成高质量的3D资产。该技术代表了3D重建领域的最新进展,可以显著提高3D内容的生成效率和质量。Flex3D的开发得到了Meta的支持,并且团队成员在3D重建和计算机视觉领域有着深厚的背景。
Pippo 是一个从单张照片生成高分辨率多人视角视频的生成模型。
Pippo 是由 Meta Reality Labs 和多所高校合作开发的生成模型,能够从单张普通照片生成高分辨率的多人视角视频。该技术的核心优势在于无需额外输入(如参数化模型或相机参数),即可生成高质量的 1K 分辨率视频。它基于多视角扩散变换器架构,具有广泛的应用前景,如虚拟现实、影视制作等。Pippo 的代码已开源,但不包含预训练权重,用户需要自行训练模型。
从穿着人身上生成平铺布料的模型
TryOffAnyone是一个用于从穿着人身上生成平铺布料的深度学习模型。该模型能够将穿着衣物的人的图片转换成布料平铺图,这对于服装设计、虚拟试衣等领域具有重要意义。它通过深度学习技术,实现了高度逼真的布料模拟,使得用户可以更直观地预览衣物的穿着效果。该模型的主要优点包括逼真的布料模拟效果和较高的自动化程度,可以减少实际试衣过程中的时间和成本。
高保真新视角合成的视频扩散模型
ViewCrafter 是一种新颖的方法,它利用视频扩散模型的生成能力以及基于点的表示提供的粗略3D线索,从单个或稀疏图像合成通用场景的高保真新视角。该方法通过迭代视图合成策略和相机轨迹规划算法,逐步扩展3D线索和新视角覆盖的区域,从而扩大新视角的生成范围。ViewCrafter 可以促进各种应用,例如通过优化3D-GS表示实现沉浸式体验和实时渲染,以及通过场景级文本到3D生成实现更富有想象力的内容创作。
生成新视角的图像,保持语义信息。
GenWarp是一个用于从单张图像生成新视角图像的模型,它通过语义保持的生成变形框架,使文本到图像的生成模型能够学习在哪里变形和在哪里生成。该模型通过增强交叉视角注意力与自注意力来解决现有方法的局限性,通过条件化生成模型在源视图图像上,并纳入几何变形信号,提高了在不同领域场景下的性能。
基于预训练的文本到图像模型生成高质量、多视角一致的3D物体图像。
ViewDiff 是一种利用预训练的文本到图像模型作为先验知识,从真实世界数据中学习生成多视角一致的图像的方法。它在U-Net网络中加入了3D体积渲染和跨帧注意力层,能够在单个去噪过程中生成3D一致的图像。与现有方法相比,ViewDiff生成的结果具有更好的视觉质量和3D一致性。
用于精细文本控制图像生成的空间对齐文本注入
FineControlNet是一个基于Pytorch的官方实现,用于生成可通过空间对齐的文本控制输入(如2D人体姿势)和实例特定的文本描述来控制图像实例的形状和纹理的图像。它可以使用从简单的线条画作为空间输入,到复杂的人体姿势。FineControlNet确保了实例和环境之间自然的交互和视觉协调,同时获得了Stable Diffusion的质量和泛化能力,但具有更多的控制能力。
无需相机校准信息的密集立体3D重建
DUSt3R是一种新颖的密集和无约束立体3D重建方法,适用于任意图像集合。它不需要事先了解相机校准或视点姿态信息,通过将成对重建问题视为点图的回归,放宽了传统投影相机模型的严格约束。DUSt3R提供了一种统一的单目和双目重建方法,并在多图像情况下提出了一种简单有效的全局对齐策略。基于标准的Transformer编码器和解码器构建网络架构,利用强大的预训练模型。DUSt3R直接提供场景的3D模型和深度信息,并且可以从中恢复像素匹配、相对和绝对相机信息。
基于视频的3D场景重建
VisFusion是一个利用视频数据进行在线3D场景重建的技术,它能够实时地从视频中提取和重建出三维环境。这项技术结合了计算机视觉和深度学习,为用户提供了一个强大的工具,用于创建精确的三维模型。
一种利用侧视图像重建3D服装虚拟人物的方法
SIFU是一个利用侧视图像重建高质量3D服装虚拟人物模型的方法。它的核心创新点是提出了一种新的基于侧视图像的隐式函数,可以增强特征提取和提高几何精度。此外,SIFU还引入了一种3D一致的纹理优化过程,可大大提升纹理质量,借助文本到图像的diffusion模型实现纹理编辑。SIFU擅长处理复杂姿势和宽松衣物,是实际应用中理想的解决方案。
快速高质量从单张图像生成3D内容
Repaint123可以在2分钟内从一张图片生成高质量、多视角一致的3D内容。它结合2D散射模型强大的图像生成能力和渐进重绘策略的纹理对齐能力,生成高质量、视角一致的多视角图像,并通过可视性感知的自适应重绘强度提升重绘过程中的图像质量。生成的高质量、多视角一致图像使得简单的均方误差损失函数就能实现快速的3D内容生成。
机器人图像渲染的新发展
Wild2Avatar是一个用于渲染被遮挡的野外单目视频中的人类外观的神经渲染方法。它可以在真实场景下渲染人类,即使障碍物可能会阻挡相机视野并导致部分遮挡。该方法通过将场景分解为三部分(遮挡物、人类和背景)来实现,并使用特定的目标函数强制分离人类与遮挡物和背景,以确保人类模型的完整性。
快速从单视图训练高保真的人体3D高斯模型
Human101是一个快速从单视图重建人体的框架。它能够在100秒内训练3D高斯模型,并以60FPS以上渲染1024分辨率的图像,而无需预先存储每帧的高斯属性。Human101管道如下:首先,从单视图视频中提取2D人体姿态。然后,利用姿态驱动3D模拟器生成匹配的3D骨架动画。最后,基于动画构建时间相关的3D高斯模型,进行实时渲染。
用扩散模型生成细节丰富的3D人类网格
Chupa是一个3D人体生成流水线,它结合了扩散模型的生成能力和神经渲染技术,可创建多样化、逼真的3D人体。该流水线可以轻松地泛化到未见过的人体姿态,并呈现逼真的效果。Chupa从SMPL-X网格生成潜在空间中的多样化高质量人体网格。
多功能生成和分析 AI 应用
Bright Eye是一个多功能的生成和分析 AI 应用,通过结合文本和图像生成以及基于计算机视觉的工具,提供一个独特的移动体验,用于移动个人(AI4MI,移动个人的人工智能)。它可以回答问题、生成短篇故事、诗歌、文章、艺术作品、进行数学计算,并从照片中提取信息。
高保真可动画 3D 人类重建模型,快速生成动画角色。
LHM(大规模可动画人类重建模型)利用多模态变压器架构进行高保真 3D 头像重建,支持从单张图像生成可动画的 3D 人类形象。该模型能够详细保留服装几何和纹理,尤其是在面部身份和细节恢复方面表现优异,适合对 3D 重建精度有较高要求的应用场景。
实现灵活且高保真度的图像生成,同时保持身份特征。
InfiniteYou(InfU)是一个基于扩散变换器的强大框架,旨在实现灵活的图像重构,并保持用户身份。它通过引入身份特征并采用多阶段训练策略,显著提升了图像生成的质量和美学,同时改善了文本与图像的对齐。该技术对提高图像生成的相似性和美观性具有重要意义,适用于各种图像生成任务。
免费 AI 创作工具,生成图像、视频及 4K 增强。
vivago.ai 是一个免费的 AI 生成工具和社区,提供文本转图像、图像转视频等功能,让创作变得更加简单高效。用户可以免费生成高质量的图像和视频,支持多种 AI 编辑工具,方便用户进行创作和分享。该平台的定位是为广大创作者提供易用的 AI 工具,满足他们在视觉创作上的需求。
使用 SREF 代码轻松生成特定视觉风格的 AI 艺术。
Midjourney SREF 代码是一项允许用户将特定视觉风格应用于图像生成的功能。使用 SREF 代码可以简化风格描述,使得创作一致的艺术作品变得更加容易。该技术帮助用户探索和分享不同的艺术风格,是 AI 艺术创作的重要工具。
一种无混叠的任意尺度超分辨率方法。
Thera 是一种先进的超分辨率技术,能够在不同尺度下生成高质量图像。其主要优点在于内置物理观察模型,有效避免了混叠现象。该技术由 ETH Zurich 的研究团队开发,适用于图像增强和计算机视觉领域,尤其在遥感和摄影测量中具有广泛应用。
Inductive Moment Matching 是一种新型的生成模型,用于高质量图像生成。
Inductive Moment Matching (IMM) 是一种先进的生成模型技术,主要用于高质量图像生成。该技术通过创新的归纳矩匹配方法,显著提高了生成图像的质量和多样性。其主要优点包括高效性、灵活性以及对复杂数据分布的强大建模能力。IMM 由 Luma AI 和斯坦福大学的研究团队开发,旨在推动生成模型领域的发展,为图像生成、数据增强和创意设计等应用提供强大的技术支持。该项目开源了代码和预训练模型,方便研究人员和开发者快速上手和应用。
通过多实例扩散模型将单张图像生成高保真度的3D场景。
MIDI是一种创新的图像到3D场景生成技术,它利用多实例扩散模型,能够从单张图像中直接生成具有准确空间关系的多个3D实例。该技术的核心在于其多实例注意力机制,能够有效捕捉物体间的交互和空间一致性,无需复杂的多步骤处理。MIDI在图像到场景生成领域表现出色,适用于合成数据、真实场景数据以及由文本到图像扩散模型生成的风格化场景图像。其主要优点包括高效性、高保真度和强大的泛化能力。
私密且无审查的人工智能平台,提供文本、图像和代码生成等功能。
Venice 是一个以隐私保护为核心的人工智能平台,提供文本生成、图像生成和代码生成等多种功能。它强调用户数据的私密性,所有数据仅存储在用户设备上,不会上传至服务器。该平台利用领先的开源 AI 技术,提供无审查、无偏见的智能服务,旨在为用户提供一个自由探索创意和知识的环境。Venice 提供免费和付费两种账户选项,付费用户可享受更高分辨率的图像、无水印、无限制的提示次数等高级功能。
一款用于生成无线条、扁平色彩风格图像和视频的LoRA模型,适用于动漫和设计领域。
Flat Color - Style是一款专为生成扁平色彩风格图像和视频设计的LoRA模型。它基于Wan Video模型训练,具有独特的无线条、低深度效果,适合用于动漫、插画和视频生成。该模型的主要优点是能够减少色彩渗出,增强黑色表现力,同时提供高质量的视觉效果。它适用于需要简洁、扁平化设计的场景,如动漫角色设计、插画创作和视频制作。该模型是免费提供给用户使用的,旨在帮助创作者快速实现具有现代感和简洁风格的视觉作品。
一种用于可变多层透明图像生成的匿名区域变换器技术。
ART 是一种基于深度学习的图像生成技术,专注于生成可变多层透明图像。它通过匿名区域布局和 Transformer 架构,实现了高效的多层图像生成。该技术的主要优点包括高效性、灵活性以及对多层图像生成的支持。它适用于需要精确控制图像层的场景,如图形设计、视觉特效等领域。目前未明确提及价格和具体定位,但其技术特性表明它可能面向专业用户和企业级应用。
一个高效的无边界3D城市生成框架,使用3D高斯绘制技术实现快速生成。
GaussianCity是一个专注于高效生成无边界3D城市的框架,基于3D高斯绘制技术。该技术通过紧凑的3D场景表示和空间感知的高斯属性解码器,解决了传统方法在生成大规模城市场景时面临的内存和计算瓶颈。其主要优点是能够在单次前向传递中快速生成大规模3D城市,显著优于现有技术。该产品由南洋理工大学S-Lab团队开发,相关论文发表于CVPR 2025,代码和模型已开源,适用于需要高效生成3D城市环境的研究人员和开发者。
© 2025 AIbase 备案号:闽ICP备08105208号-14