需求人群:
["可动画3D内容生成","虚拟现实应用"]
使用场景示例:
输入文本'一个穿红衣服的松鼠'生成松鼠动画
输入猫咪视频得到猫咪3D模型
输入'机器猫'文本得到机器猫3D动画
产品特色:
从单眼视频生成文本指导的可动画3D模型
非刚体3D模型重建
浏览量:72
非刚体3D模型的文本生成和重建框架
AnimatableDreamer是一个从单眼视频中生成和重建可动画非刚体3D模型的框架。它能够生成不同类别的非刚体对象,同时遵循从视频中提取的对象运动。关键技术是提出的典范分数蒸馏方法,将生成维度从4D简化到3D,在视频中的不同帧进行降噪,同时在唯一的典范空间内进行蒸馏过程。这样可以保证时间一致的生成和不同姿态下的形态逼真性。借助可微分变形,AnimatableDreamer将3D生成器提升到4D,为非刚体3D模型的生成和重建提供了新视角。此外,与一致性扩散模型的归纳知识相结合,典范分数蒸馏可以从新视角对重建进行正则化,从而闭环增强生成过程。大量实验表明,该方法能够从单眼视频生成高灵活性的文本指导3D模型,同时重建性能优于典型的非刚体重建方法。
通过多实例扩散模型将单张图像生成高保真度的3D场景。
MIDI是一种创新的图像到3D场景生成技术,它利用多实例扩散模型,能够从单张图像中直接生成具有准确空间关系的多个3D实例。该技术的核心在于其多实例注意力机制,能够有效捕捉物体间的交互和空间一致性,无需复杂的多步骤处理。MIDI在图像到场景生成领域表现出色,适用于合成数据、真实场景数据以及由文本到图像扩散模型生成的风格化场景图像。其主要优点包括高效性、高保真度和强大的泛化能力。
使用多照明合成的扩散方法重新照明辐射场
这是一种通过利用从2D图像扩散模型提取的先验来创建可重新照明的辐射场的方法。该方法能够将单照明条件下捕获的多视图数据转换为具有多照明效果的数据集,并通过3D高斯splats表示可重新照明的辐射场。这种方法不依赖于精确的几何形状和表面法线,因此更适合处理具有复杂几何形状和反射BRDF的杂乱场景。
3D生成建模的高精度和结构化辐射表示
GaussianCube是一种创新的3D辐射表示方法,它通过结构化和显式的表示方式,极大地促进了三维生成建模的发展。该技术通过使用一种新颖的密度约束高斯拟合算法和最优传输方法,将高斯函数重新排列到预定义的体素网格中,从而实现了高精度的拟合。与传统的隐式特征解码器或空间无结构的辐射表示相比,GaussianCube具有更少的参数和更高的质量,使得3D生成建模变得更加容易。
Champ:一种用于生成 3D 物体形状的生成模型
Champ 是一种用于生成 3D 物体形状的生成模型,它结合了隐函数和卷积神经网络,以生成高质量、多样化和逼真的 3D 形状。它可以生成各种类别的形状,包括动物、车辆和家具。
通过无光照纹理扩散模型任意绘制3D
Paint3D能够为无纹理的3D网格生成高分辨率、无光照效果、多样化的2K UV纹理图,同时基于文本或图像输入进行条件化生成。它通过预训练的考虑深度信息的2D扩散模型首先生成视角条件图像并进行多视角纹理融合来获得初始的粗糙纹理图。然后它使用专门的UV补全和UVHD纹理模型来去除光照效果和填补不完整区域。Paint3D可以生成语义一致、无光照的高质量2K UV纹理,从而显著提升无纹理3D物体的纹理生成水平。
Inductive Moment Matching 是一种新型的生成模型,用于高质量图像生成。
Inductive Moment Matching (IMM) 是一种先进的生成模型技术,主要用于高质量图像生成。该技术通过创新的归纳矩匹配方法,显著提高了生成图像的质量和多样性。其主要优点包括高效性、灵活性以及对复杂数据分布的强大建模能力。IMM 由 Luma AI 和斯坦福大学的研究团队开发,旨在推动生成模型领域的发展,为图像生成、数据增强和创意设计等应用提供强大的技术支持。该项目开源了代码和预训练模型,方便研究人员和开发者快速上手和应用。
通过去噪生成模型进行空间推理,解决复杂分布下的视觉任务。
SRM是一种基于去噪生成模型的空间推理框架,用于处理连续变量集合的推理任务。它通过为每个未观测变量分配独立的噪声水平,逐步推断出这些变量的连续表示。该技术在处理复杂分布时表现出色,能够有效减少生成过程中的幻觉现象。SRM首次证明了去噪网络可以预测生成顺序,从而显著提高了特定推理任务的准确性。该模型由德国马普信息研究所开发,旨在推动空间推理和生成模型的研究。
Funes是一个在线博物馆,致力于收集、保存和展示人类建筑的3D模型。
Funes是一个创新的在线博物馆项目,通过众包摄影测量技术将全球人类建筑转化为3D模型,旨在创建一个免费、可访问的庞大3D数据库。该项目以阿根廷作家博尔赫斯笔下的'博闻强记的福内斯'命名,象征着对人类物质记忆的永恒保存。Funes不仅是一个技术展示平台,更是一个文化传承项目,通过数字化手段保护人类文明的建筑遗产。
BioEmu 是一个用于可扩展模拟蛋白质平衡系综的生成式深度学习模型。
BioEmu 是微软开发的一种深度学习模型,用于模拟蛋白质的平衡系综。该技术通过生成式深度学习方法,能够高效地生成蛋白质的结构样本,帮助研究人员更好地理解蛋白质的动态行为和结构多样性。该模型的主要优点在于其可扩展性和高效性,能够处理复杂的生物分子系统。它适用于生物化学、结构生物学和药物设计等领域的研究,为科学家提供了一种强大的工具来探索蛋白质的动态特性。
将图像转换为3D模型,可用于渲染、动画或3D打印。
Shapen是一款创新的在线工具,它利用先进的图像处理和3D建模技术,将2D图像转化为详细的3D模型。这一技术对于设计师、艺术家和创意工作者来说是一个巨大的突破,因为它极大地简化了3D模型的创建过程,降低了3D建模的门槛。用户无需深厚的3D建模知识,只需上传图片,即可快速生成可用于渲染、动画制作或3D打印的模型。Shapen的出现,为创意表达和产品设计带来了全新的可能性,其定价策略和市场定位也使其成为个人创作者和小型工作室的理想选择。
实时编辑和完整对象结构生成的3D模型。
Stable Point Aware 3D (SPAR3D) 是 Stability AI 推出的先进3D生成模型。它能够在不到一秒的时间内,从单张图像中实现3D对象的实时编辑和完整结构生成。SPAR3D采用独特的架构,结合精确的点云采样与先进的网格生成技术,为3D资产创建提供了前所未有的控制力。该模型免费提供给商业和非商业用途,可在Hugging Face下载权重,GitHub获取代码,或通过Stability AI开发者平台API访问。
EurusPRM-Stage2是一个基于隐式过程奖励的强化学习模型,用于提升生成模型的推理能力。
EurusPRM-Stage2是一个先进的强化学习模型,通过隐式过程奖励来优化生成模型的推理过程。该模型利用因果语言模型的对数似然比来计算过程奖励,从而在不增加额外标注成本的情况下提升模型的推理能力。其主要优点在于能够在仅使用响应级标签的情况下,隐式地学习到过程奖励,从而提高生成模型的准确性和可靠性。该模型在数学问题解答等任务中表现出色,适用于需要复杂推理和决策的场景。
EurusPRM-Stage1是一个基于隐式过程奖励的强化学习模型,用于提升生成模型的推理能力。
EurusPRM-Stage1是PRIME-RL项目的一部分,旨在通过隐式过程奖励来增强生成模型的推理能力。该模型利用隐式过程奖励机制,无需额外标注过程标签,即可在推理过程中获得过程奖励。其主要优点是能够有效地提升生成模型在复杂任务中的表现,同时降低了标注成本。该模型适用于需要复杂推理和生成能力的场景,如数学问题解答、自然语言生成等。
一个用于信息检索和生成的灵活高性能框架
FlexRAG是一个用于检索增强生成(RAG)任务的灵活且高性能的框架。它支持多模态数据、无缝配置管理和开箱即用的性能,适用于研究和原型开发。该框架使用Python编写,具有轻量级和高性能的特点,能够显著提高RAG工作流的速度和减少延迟。其主要优点包括支持多种数据类型、统一的配置管理以及易于集成和扩展。
从自然语言提示创建B-Rep CAD文件和网格
Text-to-CAD UI是一个利用自然语言提示生成B-Rep CAD文件和网格的平台。它通过ML-ephant API,由Zoo提供支持,能够将用户的自然语言描述直接转化为精确的CAD模型。这项技术的重要性在于它极大地简化了设计过程,使得非专业人士也能轻松创建复杂的CAD模型,从而推动了设计的民主化和创新。产品背景信息显示,它是由Zoo开发的,旨在通过机器学习技术提升设计效率。关于价格和定位,用户需要登录后才能获取更多信息。
生成式世界模型,为电影、游戏及更多领域带来革新。
Explorer是由Odyssey推出的生成式世界模型,旨在通过人工智能技术加速电影和游戏世界的创造过程,并开启全新的娱乐形式。该技术由皮克斯联合创始人Ed Catmull支持,代表了电影、游戏以及更广泛娱乐领域中的下一个重大技术突破。Explorer能够将任何图像转化为详细的3D世界,具有生成逼真世界的能力,并且支持手动编辑,以适应不同的创作需求。
灵活调整光源位置和强度的AI光照编辑工具
IC-Light V2-Vary是一款基于扩散模型的光照编辑工具,主要针对复杂光照场景中的图像生成和编辑问题,提供了光照一致性约束、大规模数据支持、精确光照编辑等功能。它通过物理光传输理论确保物体在不同光照条件下的表现可以线性组合,减少图像伪影,保持输出结果与实际物理光照条件一致。适用于摄影师、设计师及3D建模专业人士,同时为艺术创作者提供了更多可能性。
3D网格生成与语言模型的统一
LLaMA-Mesh是一项将大型语言模型(LLMs)预训练在文本上扩展到生成3D网格的能力的技术。这项技术利用了LLMs中已经嵌入的空间知识,并实现了对话式3D生成和网格理解。LLaMA-Mesh的主要优势在于它能够将3D网格的顶点坐标和面定义表示为纯文本,允许与LLMs直接集成而无需扩展词汇表。该技术的主要优点包括能够从文本提示生成3D网格、按需产生交错的文本和3D网格输出,以及理解和解释3D网格。LLaMA-Mesh在保持强大的文本生成性能的同时,实现了与从头开始训练的模型相当的网格生成质量。
盲图像恢复技术,利用即时生成参考图像恢复破损图像
InstantIR是一种基于扩散模型的盲图像恢复方法,能够在测试时处理未知退化问题,提高模型的泛化能力。该技术通过动态调整生成条件,在推理过程中生成参考图像,从而提供稳健的生成条件。InstantIR的主要优点包括:能够恢复极端退化的图像细节,提供逼真的纹理,并且通过文本描述调节生成参考,实现创造性的图像恢复。该技术由北京大学、InstantX团队和香港中文大学的研究人员共同开发,得到了HuggingFace和fal.ai的赞助支持。
长文本问答增强型检索生成模型
LongRAG是一个基于大型语言模型(LLM)的双视角、鲁棒的检索增强型生成系统范式,旨在增强对复杂长文本知识的理解和检索能力。该模型特别适用于长文本问答(LCQA),能够处理全局信息和事实细节。产品背景信息显示,LongRAG通过结合检索和生成技术,提升了对长文本问答任务的性能,特别是在需要多跳推理的场景中。该模型是开源的,可以免费使用,主要面向研究者和开发者。
基于文本生成图像的多模态扩散变换器模型
Stable Diffusion 3.5 Medium是一个基于文本到图像的生成模型,由Stability AI开发,具有改进的图像质量、排版、复杂提示理解和资源效率。该模型使用了三个固定的预训练文本编码器,通过QK-规范化提高训练稳定性,并在前12个变换层中引入双注意力块。它在多分辨率图像生成、一致性和各种文本到图像任务的适应性方面表现出色。
连续时间一致性模型的简化、稳定与扩展
OpenAI 提出的连续时间一致性模型(sCM)是一种生成模型,它在生成高质量样本时,只需要两个采样步骤,与领先的扩散模型相比,具有显著的速度优势。sCM 通过简化理论公式,稳定并扩展了大规模数据集的训练,使得在保持样本质量的同时,大幅减少了采样时间,为实时应用提供了可能性。
高效能的文本到图像生成模型
Stable Diffusion 3.5 Large Turbo 是一个基于文本生成图像的多模态扩散变换器(MMDiT)模型,采用了对抗性扩散蒸馏(ADD)技术,提高了图像质量、排版、复杂提示理解和资源效率,特别注重减少推理步骤。该模型在生成图像方面表现出色,能够理解和生成复杂的文本提示,适用于多种图像生成场景。它在Hugging Face平台上发布,遵循Stability Community License,适合研究、非商业用途以及年收入少于100万美元的组织或个人免费使用。
新一代骁龙X系列,搭载NPU,为创作者带来革新工具。
Snapdragon X Series是高通推出的新一代产品系列,通过搭载神经处理单元(NPU),为创作者提供了强大的AI算力。这一系列产品能够显著提升移动设备在图像处理、音频制作和3D建模等方面的性能,同时延长电池续航,为用户提供前所未有的移动创作体验。Snapdragon X Series的推出,标志着移动设备在创意工作领域的一次重大飞跃,使得专业级的创作工具可以随时随地被使用。
快速生成高质量的3D人头模型
GGHead是一种基于3D高斯散射表示的3D生成对抗网络(GAN),用于从2D图像集合中学习3D头部先验。该技术通过利用模板头部网格的UV空间的规则性,预测一组3D高斯属性,从而简化了预测过程。GGHead的主要优点包括高效率、高分辨率生成、全3D一致性,并且能够实现实时渲染。它通过一种新颖的总变差损失来提高生成的3D头部的几何保真度,确保邻近渲染像素来自UV空间中相近的高斯。
设计你梦想中的家
Kanai是一个在线设计平台,允许用户通过3D扫描和模型创建来设计他们梦想中的家。用户可以导入房间和家具的3D模型,分享他们的设计愿景,并与他人协作。Kanai利用先进的3D技术,为用户提供了一个直观且互动性强的设计体验,帮助他们将想象变为现实。
通过生成式AI激活人类潜能
Stability AI是一个专注于生成式人工智能技术的公司,提供多种AI模型,包括文本到图像、视频、音频、3D和语言模型。这些模型能够处理复杂提示,生成逼真的图像和视频,以及高质量的音乐和音效。公司提供灵活的许可选项,包括自托管许可和平台API,以满足不同用户的需求。Stability AI致力于通过开放模型,为全球每个人提供高质量的AI服务。
© 2025 AIbase 备案号:闽ICP备08105208号-14