需求人群:
"该技术的目标受众是计算机图形学领域的研究人员和开发者,尤其是那些专注于图像处理、3D建模和视觉效果的专业人士。它提供了一种创新的方法来处理和增强3D场景的照明效果,这对于创建逼真的视觉效果和动画至关重要。"
使用场景示例:
在电影制作中,用于创建逼真的3D场景照明效果
在虚拟现实和游戏开发中,用于增强虚拟环境的视觉效果
在建筑可视化中,用于模拟不同光照条件下的建筑外观
产品特色:
利用2D扩散模型对单照明数据进行多照明增强
直接控制光照方向的2D重新照明神经网络
创建考虑合成重新照明输入图像不准确性的可重新照明辐射场
优化每个图像的辅助特征向量以强制执行多视图一致性
使用多层感知器参数化光方向以控制低频照明
与Outcast、Relightable 3D Gaussians和TensoIR等技术进行比较,展示其在处理复杂场景方面的优势
使用教程:
步骤1: 准备单照明条件下的多视图数据集
步骤2: 使用2D扩散模型对数据集进行多照明增强
步骤3: 利用增强后的数据训练2D重新照明神经网络
步骤4: 将训练好的网络应用于单照明数据,生成多照明数据集
步骤5: 利用多照明数据集创建3D高斯splats表示的辐射场
步骤6: 通过优化每个图像的辅助特征向量,确保多视图一致性
步骤7: 使用多层感知器参数化光方向,实现低频照明的直接控制
步骤8: 将最终的辐射场应用于目标场景,进行重新照明
浏览量:29
最新流量情况
月访问量
28.27k
平均访问时长
00:01:24
每次访问页数
1.69
跳出率
67.54%
流量来源
直接访问
41.14%
自然搜索
38.89%
邮件
0.10%
外链引荐
14.61%
社交媒体
4.53%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
奥地利
6.09%
中国
9.10%
法国
7.98%
日本
6.87%
美国
15.17%
通过无光照纹理扩散模型任意绘制3D
Paint3D能够为无纹理的3D网格生成高分辨率、无光照效果、多样化的2K UV纹理图,同时基于文本或图像输入进行条件化生成。它通过预训练的考虑深度信息的2D扩散模型首先生成视角条件图像并进行多视角纹理融合来获得初始的粗糙纹理图。然后它使用专门的UV补全和UVHD纹理模型来去除光照效果和填补不完整区域。Paint3D可以生成语义一致、无光照的高质量2K UV纹理,从而显著提升无纹理3D物体的纹理生成水平。
非刚体3D模型的文本生成和重建框架
AnimatableDreamer是一个从单眼视频中生成和重建可动画非刚体3D模型的框架。它能够生成不同类别的非刚体对象,同时遵循从视频中提取的对象运动。关键技术是提出的典范分数蒸馏方法,将生成维度从4D简化到3D,在视频中的不同帧进行降噪,同时在唯一的典范空间内进行蒸馏过程。这样可以保证时间一致的生成和不同姿态下的形态逼真性。借助可微分变形,AnimatableDreamer将3D生成器提升到4D,为非刚体3D模型的生成和重建提供了新视角。此外,与一致性扩散模型的归纳知识相结合,典范分数蒸馏可以从新视角对重建进行正则化,从而闭环增强生成过程。大量实验表明,该方法能够从单眼视频生成高灵活性的文本指导3D模型,同时重建性能优于典型的非刚体重建方法。
Vast 3D Gaussians for Large Scene Reconstruction的非官方实现
VastGaussian是一个3D场景重建的开源项目,它通过使用3D高斯来模拟大型场景的几何和外观信息。这个项目是作者从零开始实现的,可能存在一些错误,但为3D场景重建领域提供了一种新的尝试。项目的主要优点包括对大型数据集的处理能力,以及对原始3DGS项目的改进,使其更易于理解和使用。
快速从单张图片生成3D模型。
Stable Fast 3D (SF3D) 是一个基于TripoSR的大型重建模型,能够从单张物体图片生成带有纹理的UV展开3D网格资产。该模型训练有素,能在不到一秒的时间内创建3D模型,具有较低的多边形计数,并且进行了UV展开和纹理处理,使得模型在下游应用如游戏引擎或渲染工作中更易于使用。此外,模型还能预测每个物体的材料参数(粗糙度、金属感),在渲染过程中增强反射行为。SF3D适用于需要快速3D建模的领域,如游戏开发、电影特效制作等。
从多视角图像创建3D场景
CAT3D是一个利用多视角扩散模型从任意数量的输入图像生成新视角的3D场景的网站。它通过一个强大的3D重建管道,将生成的视图转化为可交互渲染的3D表示。整个处理时间(包括视图生成和3D重建)仅需一分钟。
使用多照明合成的扩散方法重新照明辐射场
这是一种通过利用从2D图像扩散模型提取的先验来创建可重新照明的辐射场的方法。该方法能够将单照明条件下捕获的多视图数据转换为具有多照明效果的数据集,并通过3D高斯splats表示可重新照明的辐射场。这种方法不依赖于精确的几何形状和表面法线,因此更适合处理具有复杂几何形状和反射BRDF的杂乱场景。
从单张图片或文本提示生成高质量3D资产
Flex3D是一个两阶段流程,能够从单张图片或文本提示生成高质量的3D资产。该技术代表了3D重建领域的最新进展,可以显著提高3D内容的生成效率和质量。Flex3D的开发得到了Meta的支持,并且团队成员在3D重建和计算机视觉领域有着深厚的背景。
3D图像匹配的先进模型
MASt3R是由Naver Corporation开发的一种用于3D图像匹配的先进模型,它专注于提升计算机视觉领域中的几何3D视觉任务。该模型利用了最新的深度学习技术,通过训练能够实现对图像之间精确的3D匹配,对于增强现实、自动驾驶以及机器人导航等领域具有重要意义。
快速生成带纹理的3D模型
SF3D是一个基于深度学习的3D资产生成模型,它能够从单张图片中快速生成具有UV展开和材质参数的带纹理3D模型。与传统方法相比,SF3D特别针对网格生成进行了训练,集成了快速UV展开技术,能够迅速生成纹理而不是依赖顶点颜色。此外,该模型还能学习材质参数和法线贴图,以提高重建模型的视觉质量。SF3D还引入了一个去照明步骤,有效去除低频照明效果,确保重建的网格在新的照明条件下易于使用。
AI 生成定制 3D 模型
3D AI Studio 是一款基于人工智能技术的在线工具,可以轻松生成定制的 3D 模型。适用于设计师、开发者和创意人士,提供高质量的数字资产。用户可以通过AI生成器快速创建3D模型,并以FBX、GLB或USDZ格式导出。3D AI Studio具有高性能、用户友好的界面、自动生成真实纹理等特点,可大幅缩短建模时间和降低成本。
将图片轻松转换为3D资产的专业工具
TRELLIS 3D AI是一款利用人工智能技术将图片转换成3D资产的专业工具。它通过结合先进的神经网络和结构化潜在技术(Structured LATents, SLAT),能够保持输入图片的结构完整性和视觉细节,生成高质量的3D资产。产品背景信息显示,TRELLIS 3D AI被全球专业人士信赖,用于可靠的图像到3D资产的转换。与传统的3D建模工具不同,TRELLIS 3D AI提供了一个无需复杂操作的图像到3D资产的转换过程。产品价格为免费,适合需要快速、高效生成3D资产的用户。
腾讯推出的3D生成框架,支持文本和图像到3D的生成。
Hunyuan3D-1是腾讯推出的一个统一框架,用于文本到3D和图像到3D的生成。该框架采用两阶段方法,第一阶段使用多视图扩散模型快速生成多视图RGB图像,第二阶段通过前馈重建模型快速重建3D资产。Hunyuan3D-1.0在速度和质量之间取得了令人印象深刻的平衡,显著减少了生成时间,同时保持了生成资产的质量和多样性。
无需相机校准信息的密集立体3D重建
DUSt3R是一种新颖的密集和无约束立体3D重建方法,适用于任意图像集合。它不需要事先了解相机校准或视点姿态信息,通过将成对重建问题视为点图的回归,放宽了传统投影相机模型的严格约束。DUSt3R提供了一种统一的单目和双目重建方法,并在多图像情况下提出了一种简单有效的全局对齐策略。基于标准的Transformer编码器和解码器构建网络架构,利用强大的预训练模型。DUSt3R直接提供场景的3D模型和深度信息,并且可以从中恢复像素匹配、相对和绝对相机信息。
3D生成建模的高精度和结构化辐射表示
GaussianCube是一种创新的3D辐射表示方法,它通过结构化和显式的表示方式,极大地促进了三维生成建模的发展。该技术通过使用一种新颖的密度约束高斯拟合算法和最优传输方法,将高斯函数重新排列到预定义的体素网格中,从而实现了高精度的拟合。与传统的隐式特征解码器或空间无结构的辐射表示相比,GaussianCube具有更少的参数和更高的质量,使得3D生成建模变得更加容易。
快速高质量从单张图像生成3D内容
Repaint123可以在2分钟内从一张图片生成高质量、多视角一致的3D内容。它结合2D散射模型强大的图像生成能力和渐进重绘策略的纹理对齐能力,生成高质量、视角一致的多视角图像,并通过可视性感知的自适应重绘强度提升重绘过程中的图像质量。生成的高质量、多视角一致图像使得简单的均方误差损失函数就能实现快速的3D内容生成。
轻松创建和利用3D内容
3D Creation是一个提供给用户轻松创建和利用3D内容的网站。它提供了多种功能,包括AI纹理、我的模型、API等。用户可以使用AI纹理功能将图片转换为纹理,也可以使用文本转3D功能将文字描述转换为3D模型。此外,用户还可以使用Sketch to 3D功能将手绘草图转换为3D模型。3D Creation适用于各种场景,如设计、图像处理、视频制作等。该产品定位于提供简单易用的3D内容创作工具,并提供合理的定价策略。
通过多实例扩散模型将单张图像生成高保真度的3D场景。
MIDI是一种创新的图像到3D场景生成技术,它利用多实例扩散模型,能够从单张图像中直接生成具有准确空间关系的多个3D实例。该技术的核心在于其多实例注意力机制,能够有效捕捉物体间的交互和空间一致性,无需复杂的多步骤处理。MIDI在图像到场景生成领域表现出色,适用于合成数据、真实场景数据以及由文本到图像扩散模型生成的风格化场景图像。其主要优点包括高效性、高保真度和强大的泛化能力。
文字转3D
Luma AI是一款基于人工智能技术的文字转3D工具,通过使用Luma AI,用户可以将文字快速转换成3D模型,并进行编辑和渲染,实现独特的视觉效果。Luma AI具有高效、易用和灵活的特点,适用于各种创意设计、广告制作和数字媒体项目。定价详细请参考官方网站。
Champ:一种用于生成 3D 物体形状的生成模型
Champ 是一种用于生成 3D 物体形状的生成模型,它结合了隐函数和卷积神经网络,以生成高质量、多样化和逼真的 3D 形状。它可以生成各种类别的形状,包括动物、车辆和家具。
一种通过3D感知递归扩散生成3D模型的框架
Ouroboros3D是一个统一的3D生成框架,它将基于扩散的多视图图像生成和3D重建集成到一个递归扩散过程中。该框架通过自条件机制联合训练这两个模块,使它们能够相互适应,以实现鲁棒的推理。在多视图去噪过程中,多视图扩散模型使用由重建模块在前一时间步渲染的3D感知图作为附加条件。递归扩散框架与3D感知反馈相结合,提高了整个过程的几何一致性。实验表明,Ouroboros3D框架在性能上优于将这两个阶段分开训练的方法,以及在推理阶段将它们结合起来的现有方法。
从单张图片生成高质量3D网格模型
Unique3D是由清华大学团队开发的一项技术,能够从单张图片中生成高保真度的纹理3D网格模型。这项技术在图像处理和3D建模领域具有重要意义,它使得用户能够快速将2D图像转化为3D模型,为游戏开发、动画制作、虚拟现实等领域提供了强大的技术支持。
实时编辑和完整对象结构生成的3D模型。
Stable Point Aware 3D (SPAR3D) 是 Stability AI 推出的先进3D生成模型。它能够在不到一秒的时间内,从单张图像中实现3D对象的实时编辑和完整结构生成。SPAR3D采用独特的架构,结合精确的点云采样与先进的网格生成技术,为3D资产创建提供了前所未有的控制力。该模型免费提供给商业和非商业用途,可在Hugging Face下载权重,GitHub获取代码,或通过Stability AI开发者平台API访问。
3D建模无忧
Sloyd是一个快速生成3D模型的平台。选择一个生成器,进行微调,即可完成。可以通过实时预览来生成模型。Sloyd提供不断扩展的生成器库,快速定制模型,可用于实时渲染和多种级别的细节。生成的模型可以根据需要进行定制,并且已经进行了UV展开和优化,方便进行贴图和使用。Sloyd适用于各种风格的模型,提供无限的变化,并且支持实时生成。
一次性3D头部重现的立体肖像解缠技术
VOODOO 3D是一种高保真的3D感知一次性头部重现技术。我们的方法将驱动者的表情转移到源头,并为全息显示产生视图一致的渲染。该方法基于完全体积神经解缠框架,用于源外观和驱动表情的3D感知一次性头部重现方法。我们的方法实时性强,产生的输出高保真且视图一致,适用于基于全息显示的3D远程会议系统。我们在各种数据集上展示了最先进的性能,并展示了对高度具有挑战性和多样化主题的高质量3D感知头部重现,包括非正面头部姿势和源头和驱动方的复杂表情。
基于文本条件的3D发型生成模型
HAAR是一种基于文本输入的生成模型,可生成逼真的3D发型。它采用文本提示作为输入,生成准备用于各种计算机图形动画应用的3D发型资产。与当前基于AI的生成模型不同,HAAR利用3D发丝作为基础表示,通过2D视觉问答系统自动注释生成的合成发型模型。我们提出了一种基于文本引导的生成方法,使用条件扩散模型在潜在的发型UV空间生成引导发丝,并使用潜在的上采样过程重建含有数十万发丝的浓密发型,给定文本描述。生成的发型可以使用现成的计算机图形技术进行渲染。
开源计算机视觉库
OpenCV是一个跨平台的开源计算机视觉和机器学习软件库,它提供了一系列编程功能,包括但不限于图像处理、视频分析、特征检测、机器学习等。该库广泛应用于学术研究和商业项目中,因其强大的功能和灵活性而受到开发者的青睐。
3D模型查看器,支持在线查看和交互
CSM 3D Viewer是一个在线3D模型查看器,允许用户在网页上查看和交互3D模型。它支持多种3D文件格式,提供了旋转、缩放等基本操作,以及更高级的查看功能。CSM 3D Viewer适用于设计师、工程师和3D爱好者,帮助他们更直观地展示和分享3D作品。
© 2025 AIbase 备案号:闽ICP备08105208号-14