几秒钟内用 AI 生成高质量 3D 模型。
Fast3D 是一个领先的 AI 驱动 3D 模型生成器,可以在几秒钟内从文本或图像创建高质量的 3D 模型。其核心优势在于快速生成、专业级材质合成,以及广泛的应用领域,包括游戏、3D 打印、AR/VR 等。Fast3D 的定价计划适合不同需求的用户,从个人创作者到专业团队均能找到合适的方案。
通过AI驱动的重试机制减少订阅支付失败,最大化订阅收入。
Slicker是一款专注于减少订阅支付失败并最大化订阅收入的商业工具。它利用先进的AI技术,对每次失败的支付进行单独处理,将逾期发票转化为收入。Slicker的主要优点是能够通过智能重试机制显著提高支付成功率,从而减少非自愿流失。它适用于各种规模的企业,尤其是依赖订阅模式的公司,能够帮助他们优化收入管理和客户留存。Slicker的定价基于成功恢复的支付金额,这种模式使得企业无需承担过多风险即可尝试该服务。
盲图像恢复技术,利用即时生成参考图像恢复破损图像
InstantIR是一种基于扩散模型的盲图像恢复方法,能够在测试时处理未知退化问题,提高模型的泛化能力。该技术通过动态调整生成条件,在推理过程中生成参考图像,从而提供稳健的生成条件。InstantIR的主要优点包括:能够恢复极端退化的图像细节,提供逼真的纹理,并且通过文本描述调节生成参考,实现创造性的图像恢复。该技术由北京大学、InstantX团队和香港中文大学的研究人员共同开发,得到了HuggingFace和fal.ai的赞助支持。
一种新的图像恢复算法
PMRF(Posterior-Mean Rectified Flow,后验均值修正流)是一种新提出的图像恢复算法,旨在解决图像恢复任务中的失真-感知质量权衡问题。它通过结合后验均值和修正流的方式,提出了一种新颖的图像恢复框架,能够在降低图像失真同时保证图像的感知质量。
一种最小化均方误差的图像恢复算法
Posterior-Mean Rectified Flow(PMRF)是一种新颖的图像恢复算法,它通过优化后验均值和矫正流模型来最小化均方误差(MSE),同时保证图像的逼真度。PMRF算法简单而高效,其理论基础是将后验均值预测(最小均方误差估计)优化到与真实图像分布相匹配。该算法在图像恢复任务中表现出色,能够处理噪声、模糊等多种退化问题,并且具有较好的感知质量。
基于重力视角坐标恢复世界定位的人体运动
GVHMR是一种创新的人体运动恢复技术,它通过重力视角坐标系统来解决从单目视频中恢复世界定位的人体运动的问题。该技术能够减少学习图像-姿态映射的歧义,并且避免了自回归方法中连续图像的累积误差。GVHMR在野外基准测试中表现出色,不仅在准确性和速度上超越了现有的最先进技术,而且其训练过程和模型权重对公众开放,具有很高的科研和实用价值。
将3D模型转换为64x64像素图像,简化3D形状生成。
Object Images是一种创新的3D模型生成技术,它通过将复杂的3D形状封装在一个64x64像素的图像中,即所谓的'Object Images'或'omages',来简化3D形状的生成和处理。这项技术通过图像生成模型,如Diffusion Transformers,直接用于3D形状生成,解决了传统多边形网格中几何和语义不规则性的挑战。
使用人工智能扩展图像边界
AI Image Extender 是一款利用人工智能技术扩展图像边界的工具,通过生成新内容与现有图像无缝融合,增强图像的视觉延展性。该产品通过先进的AI算法,能够智能识别图像内容并生成自然过渡的扩展区域,适用于需要图像扩展或背景生成的各种场景。
视频超分辨率纹理增强技术
EvTexture是一种基于事件的视觉驱动的视频超分辨率(VSR)技术,它利用事件信号中的高频细节来更好地恢复VSR中的纹理区域。该技术首次提出使用事件信号进行纹理增强,通过迭代纹理增强模块逐步探索高时间分辨率的事件信息,实现纹理区域的逐步细化,从而获得更准确、丰富的高分辨率细节。在四个数据集上,EvTexture达到了最先进的性能,特别是在Vid4数据集上,与最近的基于事件的方法相比,可以获得高达4.67dB的增益。
3D形状的文本驱动逼真材质绘制
MaPa是一种创新的方法,能够根据文本描述为3D网格生成材质。该技术通过创建分段的程序化材质图来表示外观,支持高质量渲染,并在编辑上提供了显著的灵活性。利用预训练的2D扩散模型,MaPa在不需要大量配对数据的情况下,架起了文本描述和材质图之间的桥梁。该技术通过分解形状为多个部分,并设计了控制段的扩散模型来合成与网格部分对齐的2D图像,进而初始化材质图的参数,并通过可微分渲染模块进行微调,以产生符合文本描述的材质。广泛的实验表明,MaPa在逼真度、分辨率和可编辑性方面优于现有技术。
高质量基于文本的PBR材质生成模型
DreamMat是一款能够根据文本提示为3D网格生成物理基础渲染(PBR)材质的创新模型。它通过解决现有2D扩散模型在材质分解上的不足,生成与给定几何体和光照环境一致且无内置阴影效果的高质量PBR材质。这一技术对于游戏和电影制作等下游任务具有重要意义,因为它能显著提升渲染质量并增强用户的视觉体验。
一种用于逆渲染的先进学习扩散先验方法,能够从任意图像中恢复物体材质并实现单视图图像重照明。
IntrinsicAnything 是一种先进的图像逆渲染技术,它通过学习扩散模型来优化材质恢复过程,解决了在未知静态光照条件下捕获的图像中物体材质恢复的问题。该技术通过生成模型学习材质先验,将渲染方程分解为漫反射和镜面反射项,利用现有丰富的3D物体数据进行训练,有效地解决了逆渲染过程中的歧义问题。此外,该技术还开发了一种从粗到细的训练策略,利用估计的材质引导扩散模型产生多视图一致性约束,从而获得更稳定和准确的结果。
图像材质迁移技术
ZeST是由牛津大学、Stability AI 和 MIT CSAIL 研究团队共同开发的图像材质迁移技术,它能够在无需任何先前训练的情况下,实现从一张图像到另一张图像中对象的材质迁移。ZeST支持单一材质的迁移,并能处理单一图像中的多重材质编辑,用户可以轻松地将一种材质应用到图像中的多个对象上。此外,ZeST还支持在设备上快速处理图像,摆脱了对云计算或服务器端处理的依赖,大大提高了效率。
老照片修复 图片无损放大工具
SwinIR 是一款基于 Swin Transformer 进行图像恢复的官方 PyTorch 实现,在经典、轻量级和真实世界图像超分辨率、灰度 / 彩色图像去噪以及 JPEG 压缩伪影去除等任务中取得了最先进的性能。它由浅层特征提取、深层特征提取和高质量图像重建组成,具有卓越的性能和参数优化。
AI图像增强与恢复工具
Enhance Images AI是一款先进的AI图像增强与恢复工具。通过先进的生成式AI技术,Enhance Images AI可以提供卓越的图像放大、图像增强和修复老照片的能力。让您的图像更清晰!
图片马赛克去除神器
CodeFormer是一个基于 Transformer 的预测网络,用于图片马赛克恢复。通过学习离散码本和解码器,它能够减少恢复映射的不确定性,生成高质量人脸。它具有优秀的抗退化鲁棒性,适用于合成数据集和真实数据集。
AI室内设计师,帮助您实现完美的室内设计
AI室内设计师是一款基于人工智能技术的室内设计工具。它提供虚拟搭建、室内装饰、物体移除、景观设计等功能。用户可以通过AI室内设计师快速改变墙壁、天花板、地板材质,升级厨房和浴室等,实现个性化的室内设计。此外,它还支持生成设计灵感、定价灵活等特点。无论您是房地产开发商还是个人房主,AI室内设计师都能满足您的需求。
AI 图像修复工具
Lama Cleaner 是一个免费、开源的 AI 图像修复工具,基于最先进的 AI 模型。它可以删除图片中的任何不需要的物体、瑕疵或人物,也可以擦除和替换图片中的任何物体。该工具支持 CPU、GPU 和 M1/2,并提供多种 SOTA AI 模型可供选择。
© 2025 AIbase 备案号:闽ICP备08105208号-14