需求人群:
"图像生成、风格迁移、个性化图像编辑"
使用场景示例:
艺术家使用ResAdapter根据描述生成高分辨率的艺术作品。
游戏开发者利用ResAdapter为游戏角色生成不同分辨率的图像。
社交媒体影响者使用ResAdapter创建高分辨率的个性化头像。
产品特色:
生成任意分辨率和宽高比的图像
保持风格域一致性
提高推理效率
减少额外推理时间
浏览量:799
最新流量情况
月访问量
37
平均访问时长
00:00:00
每次访问页数
1.01
跳出率
49.93%
流量来源
直接访问
41.50%
自然搜索
36.27%
邮件
0.18%
外链引荐
12.04%
社交媒体
8.31%
展示广告
0
截止目前所有流量趋势图
为扩散模型提供一致性分辨率适配
ResAdapter是一个为扩散模型(如Stable Diffusion)设计的分辨率适配器,它能够在保持风格域一致性的同时,生成任意分辨率和宽高比的图像。与处理静态分辨率图像的多分辨率生成方法不同,ResAdapter直接生成动态分辨率的图像,提高了推理效率并减少了额外的推理时间。
基于扩散反转的多步图像超分辨率模型
InvSR是一种基于扩散反转的图像超分辨率技术,利用大型预训练扩散模型中丰富的图像先验来提高超分辨率性能。该技术通过部分噪声预测策略构建扩散模型的中间状态,作为起始采样点,并使用深度噪声预测器估计最优噪声图,从而在前向扩散过程中初始化采样,生成高分辨率结果。InvSR支持任意数量的采样步骤,从一到五步不等,即使仅使用单步采样,也展现出优于或媲美现有最先进方法的性能。
视频超分辨率扩展模型
Upscale-A-Video是一个基于扩散的模型,通过将低分辨率视频和文本提示作为输入来提高视频的分辨率。该模型通过两个关键机制确保时间上的一致性:在局部,它将时间层集成到U-Net和VAE-Decoder中,保持短序列的一致性;在全局,引入了一个流引导的循环潜在传播模块,通过在整个序列中传播和融合潜在信息来增强整体视频的稳定性。由于扩散范式,我们的模型还通过允许文本提示指导纹理创建和可调噪声水平来平衡恢复和生成,实现了保真度和质量之间的权衡。大量实验证明,Upscale-A-Video在合成和真实世界基准以及AI生成的视频中均超越了现有方法,展现出令人印象深刻的视觉逼真和时间一致性。
高分辨率图像生成模型,快速生成,少步推理
Latent Consistency Models是一种高分辨率图像生成模型,通过少步推理快速生成高保真度图像。LCMs可以从任何预训练的稳定扩散模型中提取,只需要32个A100 GPU小时的训练即可生成高质量的768×768分辨率图像。此外,LCMs还引入了一种名为Latent Consistency Fine-tuning(LCF)的新方法,可以在自定义图像数据集上进行微调,实现定制化图像生成。
高分辨率图像生成模型
FLUX1.1 [pro] 是一款高分辨率图像生成模型,支持高达4MP的图像分辨率,同时保持每样本仅10秒的生成时间。FLUX1.1 [pro] – ultra模式能够在不牺牲速度的情况下,生成四倍于标准分辨率的图像,性能基准测试显示其生成速度超过同类高分辨率模型2.5倍以上。此外,FLUX1.1 [pro] – raw模式为追求真实感的创作者提供了更自然、更少合成感的图像生成效果,显著提高了人物多样性和自然摄影的真实性。该模型以每张图片0.06美元的竞争力价格提供。
动漫风格图像超分辨率增强
waifu2x是一个使用深度卷积神经网络进行动漫风格艺术作品的单图像超分辨率增强的工具。它支持照片和艺术作品,并具有降噪和放大功能。您可以选择不同的降噪和放大程度。waifu2x使用简单,适用于各种图像增强需求。您可以通过网站使用waifu2x。
基于GAN的图像超分辨率模型
AuraSR-v2是一个基于生成对抗网络(GAN)的图像超分辨率模型,专为放大生成的图像而设计,是GigaGAN论文的一个变体。该模型的PyTorch实现基于非官方的lucidrains/gigagan-pytorch仓库。它能够显著提高图像的分辨率,同时保持图像质量,对于需要高清图像输出的应用场景尤为重要。
高分辨率图像合成
luosiallen/latent-consistency-model 是一个用于合成高分辨率图像的模型。它使用少量的推理步骤来生成具有良好一致性的图像。该模型支持自定义的输入提示和参数调整,可生成逼真的艺术品、人像等图像。
AuraSR 是基于 GAN 的超分辨率图像处理模型,可用于提升生成图像的质量。
AuraSR 是基于 GAN 的 Super-Resolution 模型,通过图像条件化增强技术,提升生成图像的质量。该模型采用 GigaGAN 论文的变体实现,并使用 Torch 框架。AuraSR 的优势在于能够有效提高图像的分辨率和质量,适用于图像处理领域。
一步生成高分辨率图像
SDXL-Lightning是字节跳动开发的图像生成模型,能够在一步或少步骤内生成高达1024像素分辨率的高质量图像。该模型通过渐进式对抗式蒸馏,显著提升了图像生成速度,使其可应用于需要快速响应的场景。模型已开源,支持兼容LoRA模块和其他控制插件,可广泛用于文本到图像生成任务。
高分辨率图像合成的线性扩散变换器
Sana-1.6B是一个高效的高分辨率图像合成模型,它基于线性扩散变换器技术,能够生成高质量的图像。该模型由NVIDIA实验室开发,使用DC-AE技术,具有32倍的潜在空间,能够在多个GPU上运行,提供强大的图像生成能力。Sana-1.6B以其高效的图像合成能力和高质量的输出结果而闻名,是图像合成领域的重要技术。
像素感知稳定扩散:真实图像超分辨率和个性化风格化
Pixel-Aware Stable Diffusion(PASD)旨在实现真实图像超分辨率和个性化风格化。通过引入像素感知交叉注意力模块,PASD使得扩散模型能够以像素级别感知图像局部结构,同时利用降级去除模块提取降级不敏感特征,与图像高层信息一起引导扩散过程。PASD可轻松集成到现有的扩散模型中,如稳定扩散。在真实图像超分辨率和个性化风格化方面的实验验证了我们提出的方法的有效性。
高效率、高分辨率的文本到图像生成框架
Sana是一个由NVIDIA开发的文本到图像的生成框架,能够高效生成高达4096×4096分辨率的图像。Sana以其快速的速度和强大的文本图像对齐能力,可以在笔记本电脑GPU上部署,代表了图像生成技术的一个重要进步。该模型基于线性扩散变换器,使用预训练的文本编码器和空间压缩的潜在特征编码器,能够根据文本提示生成和修改图像。Sana的开源代码可在GitHub上找到,其研究和应用前景广阔,尤其在艺术创作、教育工具和模型研究等方面。
高分辨率、多语言文本到图像生成模型
Sana是一个由NVIDIA开发的文本到图像的框架,能够高效生成高达4096×4096分辨率的图像。Sana能够以极快的速度合成高分辨率、高质量的图像,并且具有强烈的文本-图像对齐能力,可以在笔记本电脑GPU上部署。该模型基于线性扩散变换器,使用固定预训练的文本编码器和空间压缩的潜在特征编码器,支持英文、中文和表情符号混合提示。Sana的主要优点包括高效率、高分辨率图像生成能力以及多语言支持。
加速高分辨率扩散模型推理
DistriFusion是一个训练不需要的算法,可以利用多个GPU来加速扩散模型推理,而不会牺牲图像质量。DistriFusion可以根据使用的设备数量减少延迟,同时保持视觉保真度。
高分辨率文本到图像合成模型
Meissonic是一个非自回归的掩码图像建模文本到图像合成模型,能够生成高分辨率的图像。它被设计为可以在消费级显卡上运行。这项技术的重要性在于其能够利用现有的硬件资源,为用户带来高质量的图像生成体验,同时保持了较高的运行效率。Meissonic的背景信息包括其在arXiv上发表的论文,以及在Hugging Face上的模型和代码。
高分辨率、高效率的文本到图像生成框架
Sana是一个由NVIDIA开发的文本到图像生成框架,能够高效生成高达4096×4096分辨率的高清晰度、高文本-图像一致性的图像,并且速度极快,可以在笔记本电脑GPU上部署。Sana模型基于线性扩散变换器,使用预训练的文本编码器和空间压缩的潜在特征编码器。该技术的重要性在于其能够快速生成高质量的图像,对于艺术创作、设计和其他创意领域具有革命性的影响。Sana模型遵循CC BY-NC-SA 4.0许可协议,源代码可在GitHub上找到。
高分辨率视频外延与内容生成技术
Follow-Your-Canvas 是一种基于扩散模型的视频外延技术,它能够生成高分辨率的视频内容。该技术通过分布式处理和空间窗口合并,解决了GPU内存限制问题,同时保持了视频的空间和时间一致性。它在大规模视频外延方面表现出色,能够将视频分辨率显著提升,如从512 X 512扩展到1152 X 2048,同时生成高质量和视觉上令人愉悦的结果。
训练免费高分辨率图像合成的频率视角
FouriScale从频域分析的角度探讨从预先训练的扩散模型生成高分辨率图像,通过创新的、无需训练的方法,通过将预先训练的扩散模型中的原始卷积层替换为结合膨胀技术和低通操作的方法,通过填充然后裁剪策略进一步增强,实现了灵活处理各种宽高比文本到图像生成。使用FouriScale作为指导,该方法成功平衡了生成图像的结构完整性和保真度,实现了任意尺寸、高分辨率和高质量生成的惊人能力。通过其简单性和兼容性,该方法可以为未来对超高分辨率图像合成的探索提供有价值的见解。
使用Flux.1 AI模型,轻松创建高分辨率、逼真图像。
Flux Image Generator是由Black Forest Labs开发的AI图像生成工具,它利用Flux.1模型,能够根据用户的描述生成高分辨率、细节丰富的图像。这款工具不仅能够生成逼真的图像,还支持从简单提示到复杂设计的广泛风格和主题,非常适合艺术家、设计师和内容创作者使用。它的特点包括快速生成图像、提供商业使用权、支持多种图像类型,并且提供退款政策,确保用户满意度。
高分辨率、高效率的文本到图像生成框架
Sana是一个由NVIDIA开发的文本到图像生成框架,能够高效生成高达4096×4096分辨率的图像。Sana以其快速的速度和强大的文本图像对齐能力,使得在笔记本电脑GPU上也能部署。它是一个基于线性扩散变换器(text-to-image generative model)的模型,拥有1648M参数,专门用于生成1024px基础的多尺度高宽图像。Sana模型的主要优点包括高分辨率图像生成、快速的合成速度以及强大的文本图像对齐能力。Sana模型的背景信息显示,它是基于开源代码开发的,可以在GitHub上找到源代码,同时它也遵循特定的许可证(CC BY-NC-SA 4.0 License)。
高分辨率、多语言支持的文本到图像生成模型
Sana是一个由NVIDIA开发的文本到图像的框架,能够高效生成高达4096×4096分辨率的图像。该模型以惊人的速度合成高分辨率、高质量的图像,并保持强大的文本-图像对齐能力,可部署在笔记本电脑GPU上。Sana模型基于线性扩散变换器,使用预训练的文本编码器和空间压缩的潜在特征编码器,支持Emoji、中文和英文以及混合提示。
升级和恢复旧照片,生成高分辨率图形
Mimiko是一款应用,可以升级和恢复旧照片,根据您的输入操作图像,生成高分辨率图形。它还可以删除图片背景,从详细描述中生成图形,并从图像的特定方面获得答案。Mimiko提供了未来会有更多功能的承诺。
OMG是一个基于深度学习的图像超分辨率工具
OMG(Once More Generalization)是一个开源的图像超分辨率工具,它利用深度学习技术来提高图像的分辨率。该项目旨在通过AI模型增强图像质量,使其在放大后仍然保持清晰和细腻。
免费高分辨率AI生成的库存图片
CGFaces是一个提供免费高分辨率AI生成的库存图片的网站。它提供了各种各样的图片,包括人物、动物、食物、自然等。用户可以通过搜索或浏览所有图片来找到自己需要的图片。所有图片都可以免费下载和使用,无需注册。CGFaces的优势在于它提供了高质量的图片,而且完全免费。
提升图像质量,一键实现高分辨率
AI图像增强器与放大器是一款利用先进的AI技术,将您的图像转变为令人惊叹的杰作的工具。它能够增强图像质量、放大图像分辨率,实现清晰、精细、无暇的效果。不仅可以用于个人照片的增强,也适用于专业摄影师、卡通/动漫创作者、电子商务店铺、房地产业等不同领域的图像处理需求。产品定价灵活,适用于不同用户群体。
高分辨率、高效率的文本到图像生成框架
Sana是一个由NVIDIA开发的文本到图像的生成框架,能够高效生成高达4096×4096分辨率的图像。Sana以其快速的速度、强大的文本图像对齐能力以及可在笔记本电脑GPU上部署的特性而著称。该模型基于线性扩散变换器,使用预训练的文本编码器和空间压缩的潜在特征编码器,代表了文本到图像生成技术的最新进展。Sana的主要优点包括高分辨率图像生成、快速合成、笔记本电脑GPU上的可部署性,以及开源的代码,使其在研究和实际应用中具有重要价值。
基于真实世界动漫图像和视频源的超分辨率恢复和增强
APISR旨在恢复和增强来自现实世界场景的低质量、低分辨率动漫图像和视频源,使用不同的退化处理。项目支持多种上采样因子权重,如2x、4x等,并提供Gradio演示。
© 2025 AIbase 备案号:闽ICP备08105208号-14