需求人群:
"Gemini Embedding 适合开发者、数据科学家和企业用户,用于构建高效的文本处理系统,如智能检索、推荐系统、文本分类和相似性检测等。它能够帮助用户快速实现复杂的自然语言处理任务,减少开发成本和时间。"
使用场景示例:
企业内部搜索系统:通过 Gemini Embedding 快速检索相关文档,提升搜索效率。
内容推荐平台:利用文本嵌入技术为用户推荐相关文章或产品。
学术研究:分析大量文献数据,提取关键信息和趋势。
产品特色:
提供高精度的文本嵌入,捕捉语义和上下文
支持超过 100 种语言的多语言文本处理
8K 输入标记长度,可处理长文本和代码
3K 输出维度,提供高精度的语义表示
嵌套表示学习(MRL),灵活调整维度以优化存储和性能
使用教程:
1. 注册并获取 Gemini API 密钥,访问 Google Developers 官方文档获取更多信息。
2. 使用 Python 客户端库(如示例代码)调用 Gemini Embedding 模型。
3. 将文本输入模型,获取嵌入向量。
4. 根据应用场景(如检索、分类)使用嵌入向量进行后续处理。
5. 根据需要调整模型参数(如输入长度、输出维度)以优化性能。
浏览量:361
最新流量情况
月访问量
1616.27k
平均访问时长
00:00:27
每次访问页数
1.50
跳出率
71.61%
流量来源
直接访问
38.45%
自然搜索
48.89%
邮件
0.08%
外链引荐
8.96%
社交媒体
3.30%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
英国
3.83%
印度
7.74%
日本
3.65%
美国
22.86%
Gemini Embedding 是一种先进的文本嵌入模型,通过 Gemini API 提供强大的语言理解能力。
Gemini Embedding 是 Google 推出的一种实验性文本嵌入模型,通过 Gemini API 提供服务。该模型在多语言文本嵌入基准测试(MTEB)中表现卓越,超越了之前的顶尖模型。它能够将文本转换为高维数值向量,捕捉语义和上下文信息,广泛应用于检索、分类、相似性检测等场景。Gemini Embedding 支持超过 100 种语言,具备 8K 输入标记长度和 3K 输出维度,同时引入了嵌套表示学习(MRL)技术,可灵活调整维度以满足存储需求。该模型目前处于实验阶段,未来将推出稳定版本。
Sesame AI 是一款先进的语音合成平台,能够生成自然对话式语音并具备情感智能。
Sesame AI 代表了下一代语音合成技术,通过结合先进的人工智能技术和自然语言处理,能够生成极其逼真的语音,具备真实的情感表达和自然的对话流程。该平台在生成类似人类的语音模式方面表现出色,同时能够保持一致的性格特征,非常适合内容创作者、开发者和企业,用于为其应用程序增添自然语音功能。目前尚不清楚其具体价格和市场定位,但其强大的功能和广泛的应用场景使其在市场上具有较高的竞争力。
InternLM3 是一个专注于文本生成的模型集合,提供多种优化版本以满足不同需求。
InternLM3 是由 InternLM 团队开发的一系列高性能语言模型,专注于文本生成任务。该模型通过多种量化技术优化,能够在不同硬件环境下高效运行,同时保持出色的生成质量。其主要优点包括高效的推理性能、多样化的应用场景以及对多种文本生成任务的优化支持。InternLM3 适用于需要高质量文本生成的开发者和研究人员,能够帮助他们在自然语言处理领域快速实现应用。
在句子表示空间中的语言建模
Large Concept Models(LCM)是由Facebook Research开发的一个大型语言模型,它在句子的表示空间中进行操作,使用SONAR嵌入空间支持多达200种语言的文本和57种语言的语音。LCM是一个序列到序列模型,用于自回归句子预测,探索了多种方法,包括均方误差回归、基于扩散的生成变体等。这些探索使用的是1.6B参数模型和约1.3T的培训数据。LCM的主要优点包括其在高级别语义表示上的运作能力,以及能够处理多语言数据的能力。此外,LCM的开源性质使得研究人员和开发者能够访问和使用这些模型,推动自然语言处理技术的发展。
大规模多语言文本数据集
allenai/tulu-3-sft-olmo-2-mixture是一个大规模的多语言数据集,包含了用于训练和微调语言模型的多样化文本样本。该数据集的重要性在于它为研究人员和开发者提供了丰富的语言资源,以改进和优化多语言AI模型的性能。产品背景信息包括其由多个来源的数据混合而成,适用于教育和研究领域,且遵循特定的许可协议。
70B参数的多语言大型预训练语言模型
Meta Llama 3.3是一个70B参数的多语言大型预训练语言模型(LLM),专为多语言对话用例优化,并在常见行业基准测试中表现优于许多现有的开源和封闭聊天模型。该模型采用优化的Transformer架构,并使用监督式微调(SFT)和基于人类反馈的强化学习(RLHF)来符合人类的有用性和安全性偏好。
大规模多语言偏好混合数据集
OLMo 2 1124 13B Preference Mixture是一个由Hugging Face提供的大型多语言数据集,包含377.7k个生成对,用于训练和优化语言模型,特别是在偏好学习和指令遵循方面。该数据集的重要性在于它提供了一个多样化和大规模的数据环境,有助于开发更加精准和个性化的语言处理技术。
多语言生成语言模型
Aya模型是一个大规模的多语言生成性语言模型,能够在101种语言中遵循指令。该模型在多种自动和人类评估中优于mT0和BLOOMZ,尽管它覆盖的语言数量是后者的两倍。Aya模型使用包括xP3x、Aya数据集、Aya集合、DataProvenance集合的一个子集和ShareGPT-Command等多个数据集进行训练,并在Apache-2.0许可下发布,以推动多语言技术的发展。
多语言大型语言模型
Llama 3.2是由Meta公司推出的多语言大型语言模型(LLMs),包含1B和3B两种规模的预训练和指令调优生成模型。这些模型在多种语言对话用例中进行了优化,包括代理检索和总结任务。Llama 3.2在许多行业基准测试中的表现优于许多现有的开源和封闭聊天模型。
大型多语言预训练语言模型
Meta Llama 3.1-405B 是由 Meta 开发的一系列大型多语言预训练语言模型,包含8B、70B和405B三种规模的模型。这些模型经过优化的变压器架构,使用监督式微调(SFT)和强化学习与人类反馈(RLHF)进行调优,以符合人类对帮助性和安全性的偏好。Llama 3.1 模型支持多种语言,包括英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语。该模型在多种自然语言生成任务中表现出色,并在行业基准测试中超越了许多现有的开源和封闭聊天模型。
印度领先的多语言生成式AI应用
apna AI是印度首款多语言生成式AI应用,旨在通过先进的人工智能技术,为印度用户提供一个能够进行自然语言交流的智能伴侣。它不仅能够理解多种印度语言,还能生成富有创意和个性化的内容,满足用户在聊天、娱乐、学习等多方面的需求。
开源多语言多模态对话模型
GLM-4系列是智谱AI推出的新一代预训练模型,包括GLM-4-9B、GLM-4-9B-Chat、GLM-4-9B-Chat-1M和GLM-4V-9B。这些模型在语义理解、数学推理、代码执行等方面表现出色,支持多达26种语言,并具备网页浏览、代码执行等高级功能。GLM-4V-9B模型还具备高分辨率的视觉理解能力,适合多模态应用场景。
多语言指令微调的大型语言模型
Aya-23-8B是由Cohere For AI开发的指令微调模型,具有23种语言的强大多语言能力,专注于将高性能预训练模型与Aya Collection结合,为研究人员提供高性能的多语言模型。
使用大型语言模型改进文本嵌入
E5-mistral-7b-instruct 是一个具有 32 层和 4096 个嵌入大小的文本嵌入模型。它可以用于编码查询和文档,以生成语义向量表示。该模型使用自然语言任务描述指导文本嵌入过程,可以根据不同的任务进行定制。该模型在 MS-MARCO passage ranking 数据集上进行了训练,可用于信息检索、问答等自然语言处理任务。
英文文本嵌入模型
Jina Embeddings V2 Base是一种英文文本嵌入模型,支持8192个序列长度。它基于Bert架构(JinaBert),支持ALiBi的对称双向变体,以允许更长的序列长度。该模型在C4数据集上进行了预训练,并在Jina AI的超过4亿个句子对和负样本的集合上进行了进一步训练。该模型适用于处理长文档的多种用例,包括长文档检索、语义文本相似度、文本重排序、推荐、RAG和LLM基于生成式搜索等。模型具有137百万个参数,推荐在单个GPU上进行推理。
强大的语言模型,支持多种自然语言处理任务。
GLM-4-32B 是一个高性能的生成语言模型,旨在处理多种自然语言任务。它通过深度学习技术训练而成,能够生成连贯的文本和回答复杂问题。该模型适用于学术研究、商业应用和开发者,价格合理,定位精准,是自然语言处理领域的领先产品。
打破技术边界,让创意自由生长
HaiSnap 是一个创新的平台,旨在通过打破技术边界促进创意的发展。它为用户提供了丰富的工具和功能,以便于管理任务、进行小游戏等,帮助用户高效地实现目标。适用于各种用户,无论是个人创作者还是团队协作,HaiSnap 都能为他们提供支持。
亚马逊全新基础模型理解语气、语调与节奏,提升人机对话自然度。
Amazon Nova Sonic 是一款前沿的基础模型,能够整合语音理解和生成,提升人机对话的自然流畅度。该模型克服了传统语音应用中的复杂性,通过统一的架构实现更深层次的交流理解,适用于多个行业的 AI 应用,具有重要的商业价值。随着人工智能技术的不断发展,Nova Sonic 将为客户提供更好的语音交互体验,提升服务效率。
一个针对机器学习优化的多模态 OCR 管道。
该产品是一个专门设计的 OCR 系统,旨在从复杂的教育材料中提取结构化数据,支持多语言文本、数学公式、表格和图表,能够生成适用于机器学习训练的高质量数据集。该系统利用多种技术和 API,能够提供高精度的提取结果,适合学术研究和教育工作者使用。
一个强大的文本生成模型,适用于多种对话应用。
DeepSeek-V3-0324 是一个先进的文本生成模型,具有 685 亿参数,采用 BF16 和 F32 张量类型,能够支持高效的推理和文本生成。该模型的主要优点在于其强大的生成能力和开放源码的特性,使其可以被广泛应用于多种自然语言处理任务。该模型的定位是为开发者和研究人员提供一个强大的工具,帮助他们在文本生成领域取得突破。
一款 21B 通用推理模型,适合低延迟应用。
Reka Flash 3 是一款从零开始训练的 21 亿参数的通用推理模型,利用合成和公共数据集进行监督微调,结合基于模型和基于规则的奖励进行强化学习。该模型在低延迟和设备端部署应用中表现优异,具有较强的研究能力。它目前是同类开源模型中的最佳选择,适合于各种自然语言处理任务和应用场景。
o1-pro 模型通过强化学习提升复杂推理能力,提供更优答案。
o1-pro 模型是一种先进的人工智能语言模型,专为提供高质量文本生成和复杂推理设计。其在推理和响应准确性上表现优越,适合需要高精度文本处理的应用场景。该模型的定价基于使用的 tokens,输入每百万 tokens 价格为 150 美元,输出每百万 tokens 价格为 600 美元,适合企业和开发者在其应用中集成高效的文本生成能力。
一款开源的14B参数量的数学模型,通过强化学习训练,性能卓越。
Light-R1-14B-DS 是由北京奇虎科技有限公司开发的开源数学模型。该模型基于 DeepSeek-R1-Distill-Qwen-14B 进行强化学习训练,在 AIME24 和 AIME25 数学竞赛基准测试中分别达到了 74.0 和 60.2 的高分,超越了许多 32B 参数量的模型。它在轻量级预算下成功实现了对已经长链推理微调模型的强化学习尝试,为开源社区提供了一个强大的数学模型工具。该模型的开源有助于推动自然语言处理在教育领域的应用,特别是数学问题解决方面,为研究人员和开发者提供了宝贵的研究基础和实践工具。
快速为任何社交媒体平台生成引人入胜的评论
Easy Comment Generator 是一款基于人工智能的在线工具,旨在为社交媒体用户提供快速生成评论的功能。它通过先进的 AI 技术,能够根据用户选择的平台、语言、风格和评论长度等参数,生成与内容相关且风格相符的评论。该工具的主要优点包括完全免费、无需注册、支持多平台和多语言,以及能够快速生成多种评论变体,节省用户的时间和精力。它适用于个人用户、社交媒体管理者以及企业品牌,帮助他们在社交媒体上保持活跃并提升用户互动率。
理想同学是一款智能聊天助手,提供便捷的对话服务和智能交互体验。
理想同学是一款由北京车励行信息技术有限公司开发的智能聊天助手。它通过人工智能技术实现自然语言处理,能够与用户进行流畅的对话交互。该产品的主要优点是操作简单、响应迅速,能够为用户提供个性化的服务。它适用于多种场景,如日常聊天、信息查询等。产品目前没有明确的价格信息,但根据其功能定位,可能主要面向个人用户和企业客户。
Zonos TTS 是一款支持多语言、情感控制和零样本文本到语音克隆的高质量 AI 文本转语音技术。
Zonos TTS 是一款先进的 AI 文本转语音技术,支持多语言、情感控制和零样本语音克隆。它能够生成自然、富有表现力的语音,适用于教育、有声读物、视频游戏、语音助手等多种场景。该技术通过高质量音频输出(44kHz)和快速实时处理能力,为用户提供高效且个性化的语音生成解决方案。虽然产品本身并非完全免费,但提供了灵活的定价方案以满足不同用户的需求。
Embra 是一款 AI 操作系统,旨在简化工作流程,提升销售与产品开发效率。
Embra 是一款创新的 AI 操作系统,专为现代企业设计,旨在通过 AI 技术整合销售与产品开发流程。它通过智能会议记录、任务自动化、多语言支持等功能,帮助企业团队更高效地协作和管理项目。Embra 的核心优势在于其强大的图记忆引擎和 AI 代理功能,能够自动组织重要信息、生成报告,并支持多种工作场景。其价格策略灵活,提供免费试用和付费计划,适合追求高效协作和数字化转型的企业。
© 2025 AIbase 备案号:闽ICP备08105208号-14