需求人群:
"适用于机器人模拟任务的生成和多任务策略训练"
使用场景示例:
使用GenSim生成机器人模拟任务,进行多任务策略训练
使用GenSim生成机器人模拟任务,进行任务级别泛化
使用GenSim生成机器人模拟任务的代码,进行机器人模拟任务的开发
产品特色:
使用大型语言模型生成机器人模拟任务
支持目标导向生成和探索性生成两种模式
可用于多任务策略训练和任务级别泛化
使用GPT4扩展了现有基准测试10倍以上,支持超过100个任务
支持代码生成机器人模拟任务
预训练在GPT4生成的模拟任务上的多任务策略在真实世界中展现了更强的转移能力,超过基线25%
浏览量:6
最新流量情况
月访问量
8799
平均访问时长
00:01:02
每次访问页数
2.13
跳出率
47.21%
流量来源
直接访问
49.51%
自然搜索
29.05%
邮件
0.04%
外链引荐
5.35%
社交媒体
15.39%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
美国
99.59%
使用大型语言模型生成机器人模拟任务
GenSim利用大型语言模型生成大量的机器人模拟任务,支持目标导向生成和探索性生成两种模式,可用于多任务策略训练和任务级别泛化。使用GPT4扩展了现有基准测试10倍以上,支持超过100个任务,通过有监督微调和评估多个LLM,包括微调的GPT和Code Llama,生成机器人模拟任务的代码。最小的模拟到真实世界的适应后,预训练在GPT4生成的模拟任务上的多任务策略在真实世界中展现了更强的转移能力,超过基线25%。
Qwen2.5-Coder系列的1.5B参数指令调优模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专为代码生成、代码推理和代码修复而设计。基于强大的Qwen2.5,通过增加训练令牌至5.5万亿,包括源代码、文本代码基础、合成数据等,Qwen2.5-Coder-32B已成为当前最先进的开源代码大型语言模型,其编码能力与GPT-4o相匹配。此模型是1.5B参数的指令调优版本,采用GGUF格式,具有因果语言模型、预训练和后训练阶段、transformers架构等特点。
Hermes系列的最新版大型语言模型
Hermes 3是Nous Research公司推出的Hermes系列最新版大型语言模型(LLM),相较于Hermes 2,它在代理能力、角色扮演、推理、多轮对话、长文本连贯性等方面都有显著提升。Hermes系列模型的核心理念是将LLM与用户对齐,赋予终端用户强大的引导能力和控制权。Hermes 3在Hermes 2的基础上,进一步增强了功能调用和结构化输出能力,提升了通用助手能力和代码生成技能。
12B参数的大型语言模型
Mistral-Nemo-Base-2407是由Mistral AI和NVIDIA联合训练的12B参数大型预训练生成文本模型。该模型在多语言和代码数据上进行了训练,显著优于相同或更小规模的现有模型。其主要特点包括:Apache 2.0许可证发布,支持预训练和指令版本,128k上下文窗口训练,支持多种语言和代码数据,是Mistral 7B的替代品。模型架构包括40层、5120维、128头维、14364隐藏维、32头数、8个kv头(GQA)、词汇量约128k、旋转嵌入(theta=1M)。该模型在多个基准测试中表现出色,如HellaSwag、Winogrande、OpenBookQA等。
一键克隆网页UI组件并生成代码的浏览器插件
UICloner Extension是一款AI驱动的浏览器插件,它允许用户通过一键操作克隆任何网页上的UI组件,并自动生成相应的代码实现。这款插件的主要优点包括一键选取、多格式代码支持、实时预览等。它的重要性在于能够大幅提高前端开发者的工作效率,尤其是在UI设计和原型制作阶段。产品背景信息显示,UICloner Extension支持HTML+Tailwind CSS或HTML+纯CSS代码的生成,适合需要快速实现UI原型的开发者使用。插件是免费使用的,定位于提高开发效率和降低设计到代码的转换难度。
7B参数的大型语言模型,提升自然语言处理能力
OLMo 2 7B是由Allen Institute for AI (Ai2)开发的一款7B参数的大型语言模型,它在多个自然语言处理任务上展现出色的表现。该模型通过在大规模数据集上的训练,能够理解和生成自然语言,支持多种语言模型相关的科研和应用。OLMo 2 7B的主要优点包括其大规模的参数量,使得模型能够捕捉到更加细微的语言特征,以及其开源的特性,促进了学术界和工业界的进一步研究和应用。
高效长序列大型语言模型推理技术
Star-Attention是NVIDIA提出的一种新型块稀疏注意力机制,旨在提高基于Transformer的大型语言模型(LLM)在长序列上的推理效率。该技术通过两个阶段的操作显著提高了推理速度,同时保持了95-100%的准确率。它与大多数基于Transformer的LLM兼容,无需额外训练或微调即可直接使用,并且可以与其他优化方法如Flash Attention和KV缓存压缩技术结合使用,进一步提升性能。
Qwen2.5-Coder系列中的0.5B参数量指令调优模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专注于代码生成、代码推理和代码修复。基于强大的Qwen2.5,该系列模型通过增加训练令牌至5.5万亿,包括源代码、文本代码接地、合成数据等,显著提升了代码生成、推理和修复能力。Qwen2.5-Coder-32B已成为当前最先进的开源代码大型语言模型,编码能力与GPT-4o相匹配。此外,Qwen2.5-Coder还为真实世界应用提供了更全面的基础,如代码代理,不仅增强了编码能力,还保持了在数学和通用能力方面的优势。
Qwen2.5-Coder系列的0.5B参数代码生成模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专注于代码生成、代码推理和代码修复。基于强大的Qwen2.5,该模型在训练中涵盖了5.5万亿的源代码、文本代码基础、合成数据等,成为当前开源代码语言模型的最新技术。该模型不仅在编程能力上与GPT-4o相匹配,还在数学和一般能力上保持了优势。Qwen2.5-Coder-0.5B-Instruct-GPTQ-Int4模型是经过GPTQ量化的4位指令调整模型,具有因果语言模型、预训练和后训练、transformers架构等特点。
社区驱动的专家级LLMs市场,专为技术主题设计。
Lune AI是一个社区驱动的专家级大型语言模型(LLMs)市场,由开发者在技术主题上创建,以超越单独的AI模型。它通过集成各种技术知识源,如GitHub仓库、文档等,减少技术查询的幻觉,并提供准确的参考。Lune AI的API与OpenAI兼容,可以轻松集成到各种支持OpenAI兼容模型的工具中,如Cursor、Continue等。此外,Lune AI还提供了一个付费计划,用户可以通过贡献和创建Lunes来获得报酬。
Qwen2.5-Coder系列中的0.5B参数指令调优模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专注于代码生成、代码推理和代码修复。基于强大的Qwen2.5,Qwen2.5-Coder-32B已成为当前最先进的开源代码语言模型,其编码能力与GPT-4o相匹配。该模型在实际应用中,如代码代理等,提供了更全面的基础,不仅增强了编码能力,还保持了在数学和通用能力方面的优势。
Qwen2.5-Coder系列的0.5B参数代码生成模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专注于代码生成、代码推理和代码修复。基于Qwen2.5的强大能力,通过扩展训练令牌至5.5万亿,包括源代码、文本代码基础、合成数据等,Qwen2.5-Coder-32B已成为当前最先进的开源代码LLM,其编码能力与GPT-4o相匹配。此模型为AWQ量化的4位指令调整0.5B参数版本,具有因果语言模型、预训练和后训练、transformers架构等特点。
123B参数的大型语言模型,具备先进推理和编码能力。
Mistral-Large-Instruct-2411是由Mistral AI提供的一款具有123B参数的大型语言模型,它在推理、知识、编码等方面具有最先进的能力。该模型支持多种语言,并在80多种编程语言上进行了训练,包括但不限于Python、Java、C、C++等。它以代理为中心,具备原生函数调用和JSON输出能力,是进行科研和开发的理想选择。
Qwen2.5-Coder系列中的1.5B参数量级代码生成模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专注于代码生成、代码推理和代码修复。基于强大的Qwen2.5,该模型在训练中包含了5.5万亿的源代码、文本代码关联、合成数据等,是目前开源代码语言模型中的佼佼者,其编码能力可与GPT-4相媲美。此外,Qwen2.5-Coder还具备更全面的现实世界应用基础,如代码代理等,不仅增强了编码能力,还保持了在数学和通用能力方面的优势。
Qwen2.5-Coder系列的1.5B参数代码生成模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专注于代码生成、代码推理和代码修复。基于强大的Qwen2.5,该模型在训练中使用了5.5万亿的源代码、文本代码关联、合成数据等,使其成为当前开源代码语言模型中的佼佼者。该模型不仅在编程能力上有所增强,还保持了在数学和通用能力方面的优势。
Qwen2.5-Coder系列中的1.5B参数代码生成模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专为代码生成、推理和修复而设计。基于强大的Qwen2.5,该模型在训练时包含了5.5万亿的源代码、文本代码基础、合成数据等,使其在代码能力上达到了开源代码LLM的最新水平。它不仅增强了编码能力,还保持了在数学和通用能力方面的优势。
数据驱动的框架,增强大型语言模型的工作流编排能力
WorkflowLLM是一个以数据为中心的框架,旨在增强大型语言模型(LLMs)在工作流编排方面的能力。核心是WorkflowBench,这是一个大规模的监督式微调数据集,包含来自83个应用、28个类别的1503个API的106763个样本。WorkflowLLM通过微调Llama-3.1-8B模型,创建了专门针对工作流编排任务优化的WorkflowLlama模型。实验结果表明,WorkflowLlama在编排复杂工作流方面表现出色,并且能够很好地泛化到未见过的API。
124B参数的多模态大型语言模型
Pixtral-Large-Instruct-2411是由Mistral AI研发的124B参数的大型多模态模型,基于Mistral Large 2构建,展现出前沿级别的图像理解能力。该模型不仅能够理解文档、图表和自然图像,同时保持了Mistral Large 2在文本理解方面的领先地位。它在MathVista、DocVQA、VQAv2等数据集上达到了最先进的性能,是科研和商业应用的强大工具。
多模态语音大型语言模型
fixie-ai/ultravox-v0_4_1-llama-3_1-70b是一个基于预训练的Llama3.1-70B-Instruct和whisper-large-v3-turbo的大型语言模型,能够处理语音和文本输入,生成文本输出。该模型通过特殊伪标记<|audio|>将输入音频转换为嵌入,并与文本提示合并后生成输出文本。Ultravox的开发旨在扩展语音识别和文本生成的应用场景,如语音代理、语音到语音翻译和口语音频分析等。该模型遵循MIT许可,由Fixie.ai开发。
多模态语音大型语言模型
fixie-ai/ultravox-v0_4_1-llama-3_1-8b是一个基于预训练的Llama3.1-8B-Instruct和whisper-large-v3-turbo的大型语言模型,能够处理语音和文本输入,生成文本输出。该模型通过特殊的<|audio|>伪标记将输入音频转换为嵌入,并生成输出文本。未来版本计划扩展标记词汇以支持生成语义和声学音频标记,进而可以用于声码器产生语音输出。该模型在翻译评估中表现出色,且没有偏好调整,适用于语音代理、语音到语音翻译、语音分析等场景。
Qwen2.5-Coder系列中的3B参数量指令调优模型
Qwen2.5-Coder-3B-Instruct-GPTQ-Int8是Qwen2.5-Coder系列中的一种大型语言模型,专门针对代码生成、代码推理和代码修复进行了优化。该模型基于Qwen2.5,训练数据包括源代码、文本代码关联、合成数据等,达到5.5万亿个训练令牌。Qwen2.5-Coder-32B已成为当前最先进的开源代码大型语言模型,其编码能力与GPT-4o相匹配。该模型还为现实世界中的应用提供了更全面的基础,如代码代理,不仅增强了编码能力,还保持了在数学和通用能力方面的优势。
Qwen2.5-Coder系列中的3B参数指令调优模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专为代码生成、推理和修复而设计。该模型基于Qwen2.5,扩展了训练令牌至5.5万亿,包括源代码、文本代码基础、合成数据等。Qwen2.5-Coder-32B是目前开源代码LLM中的佼佼者,其编码能力与GPT-4o相匹配。此模型为GPTQ-量化的4位指令调优3B参数Qwen2.5-Coder模型,具有因果语言模型、预训练和后训练阶段、transformers架构等特点。
Qwen2.5-Coder系列中的3B参数指令调优模型
Qwen2.5-Coder是Qwen大型语言模型的最新系列,专注于代码生成、代码推理和代码修复。基于强大的Qwen2.5,训练令牌扩展到5.5万亿,包括源代码、文本代码接地、合成数据等。Qwen2.5-Coder-32B已成为当前最先进的开源代码大型语言模型,其编码能力与GPT-4o相匹配。该模型在实际应用中提供了更全面的基础,如代码代理,不仅增强了编码能力,还保持了在数学和通用能力方面的优势。
开源代码生成与推理的大型语言模型
Qwen2.5-Coder是一系列特定于代码的大型语言模型,覆盖了从0.5亿到32亿参数的不同模型大小,以满足不同开发者的需求。该模型在代码生成、代码推理和代码修复方面有显著提升,基于强大的Qwen2.5,训练令牌扩展到5.5万亿,包括源代码、文本代码基础、合成数据等。Qwen2.5-Coder-32B是目前最先进的开源代码生成大型语言模型,其编码能力与GPT-4o相匹配。此外,该模型还支持长达128K令牌的长上下文,并采用AWQ 4-bit量化技术,以提高模型的效率和性能。
开源代码生成语言模型
Qwen2.5-Coder-32B-Instruct-GPTQ-Int8是Qwen系列中针对代码生成优化的大型语言模型,拥有32亿参数,支持长文本处理,是当前开源代码生成领域最先进的模型之一。该模型基于Qwen2.5进行了进一步的训练和优化,不仅在代码生成、推理和修复方面有显著提升,而且在数学和通用能力上也保持了优势。模型采用GPTQ 8-bit量化技术,以减少模型大小并提高运行效率。
开源的32亿参数代码生成语言模型
Qwen2.5-Coder-32B-Instruct-GPTQ-Int4是基于Qwen2.5的代码生成大型语言模型,具有32.5亿参数量,支持长文本处理,最大支持128K tokens。该模型在代码生成、代码推理和代码修复方面有显著提升,是当前开源代码语言模型中的佼佼者。它不仅增强了编码能力,还保持了在数学和通用能力方面的优势。
开源代码生成大型语言模型
Qwen2.5-Coder是一系列针对代码生成优化的大型语言模型,覆盖了0.5、1.5、3、7、14、32亿参数的六种主流模型尺寸,以满足不同开发者的需求。Qwen2.5-Coder在代码生成、代码推理和代码修复方面有显著提升,基于强大的Qwen2.5,训练令牌扩展到5.5万亿,包括源代码、文本代码接地、合成数据等,成为当前最先进的开源代码LLM,其编码能力与GPT-4o相匹配。此外,Qwen2.5-Coder还提供了更全面的基础,适用于现实世界中的代码代理等应用场景。
© 2024 AIbase 备案号:闽ICP备08105208号-14