需求人群:
"目标受众为需要处理视觉和视觉-语言任务的研究人员和开发者,如图像描述、目标检测和图像分割等。Florence-2的多任务学习能力和序列到序列架构使其成为这些任务的理想选择。"
使用场景示例:
使用Florence-2生成图像描述
利用Florence-2进行目标检测
通过Florence-2实现图像分割
产品特色:
图像到文本转换
基于提示的文本生成
视觉和视觉-语言任务处理
多任务学习
零样本和微调性能
序列到序列架构
使用教程:
1. 导入必要的库和模型:`AutoModelForCausalLM`和`AutoProcessor`。
2. 从Hugging Face加载预训练模型和处理器。
3. 定义要执行的任务提示。
4. 加载或获取待处理的图像。
5. 通过处理器将文本和图像转换为模型可接受的输入格式。
6. 使用模型生成输出,如文本描述或目标检测框。
7. 对生成的输出进行后处理,以获得最终结果。
8. 打印或以其他方式展示结果。
浏览量:43
最新流量情况
月访问量
19075.32k
平均访问时长
00:05:32
每次访问页数
5.52
跳出率
45.07%
流量来源
直接访问
48.31%
自然搜索
36.36%
邮件
0.03%
外链引荐
12.17%
社交媒体
3.11%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
13.13%
印度
7.59%
日本
3.67%
俄罗斯
6.13%
美国
18.18%
先进的视觉基础模型,支持多种视觉和视觉-语言任务。
Florence-2是由微软开发的高级视觉基础模型,采用基于提示的方法处理广泛的视觉和视觉-语言任务。该模型能够解释简单的文本提示,执行如描述、目标检测和分割等任务。它利用包含54亿个注释的5.4亿张图像的FLD-5B数据集,精通多任务学习。模型的序列到序列架构使其在零样本和微调设置中都表现出色,证明其为有竞争力的视觉基础模型。
多模态12B参数模型,结合视觉编码器处理图像和文本。
Pixtral-12B-2409是由Mistral AI团队开发的多模态模型,包含12B参数的多模态解码器和400M参数的视觉编码器。该模型在多模态任务中表现出色,支持不同尺寸的图像,并在文本基准测试中保持最前沿的性能。它适用于需要处理图像和文本数据的高级应用,如图像描述生成、视觉问答等。
玩转热门主流 AI 模型,并接入在你的产品中
X Model 是一个集成热门主流 AI 模型的平台,用户可以在其产品中轻松接入这些模型。它的主要优点包括多样的模型选择、高质量的输出结果以及简单易用的接入流程。X Model 价格灵活,适用于各种规模的业务。
轻量级、先进的文本生成模型
Gemma-2-9b-it是由Google开发的一系列轻量级、最先进的开放模型,基于与Gemini模型相同的研究和技术构建而成。这些模型是文本到文本的解码器仅大型语言模型,以英文提供,适用于问答、摘要和推理等多样化文本生成任务。由于其相对较小的尺寸,可以在资源有限的环境中部署,如笔记本电脑、桌面或个人云基础设施,使先进的AI模型更加普及,促进创新。
先进的视觉基础模型,支持多种视觉和视觉-语言任务
Florence-2是由微软开发的高级视觉基础模型,采用基于提示的方法处理广泛的视觉和视觉-语言任务。该模型能够解释简单的文本提示,执行诸如图像描述、目标检测和分割等任务。它利用FLD-5B数据集,包含54亿个注释,覆盖1.26亿张图像,精通多任务学习。其序列到序列的架构使其在零样本和微调设置中均表现出色,证明是一个有竞争力的视觉基础模型。
先进的视觉基础模型,支持多种视觉和视觉-语言任务。
Florence-2-large-ft是由微软开发的高级视觉基础模型,使用基于提示的方法来处理广泛的视觉和视觉-语言任务。该模型能够通过简单的文本提示执行诸如图像描述、目标检测和分割等任务。它利用FLD-5B数据集,包含54亿个注释,覆盖1.26亿张图像,实现多任务学习。模型的序列到序列架构使其在零样本和微调设置中均表现出色,证明其为有竞争力的视觉基础模型。
先进的视觉基础模型,支持多种视觉和视觉-语言任务
Florence-2-large是由微软开发的先进视觉基础模型,采用基于提示的方法处理广泛的视觉和视觉-语言任务。该模型能够解释简单的文本提示来执行如图像描述、目标检测和分割等任务。它利用包含54亿注释的5.4亿图像的FLD-5B数据集,精通多任务学习。其序列到序列的架构使其在零样本和微调设置中均表现出色,证明是一个有竞争力的视觉基础模型。
一种统一的视觉任务基础模型。
Florence-2是一个新型的视觉基础模型,它通过统一的、基于提示的表示方式,能够处理多种计算机视觉和视觉-语言任务。它设计为接受文本提示作为任务指令,并以文本形式生成期望的结果,无论是图像描述、目标检测、定位还是分割。这种多任务学习设置需要大规模、高质量的注释数据。为此,我们共同开发了FLD-5B,它包含了54亿个综合视觉注释,涵盖1.26亿张图像,使用了自动化图像注释和模型细化的迭代策略。我们采用了序列到序列的结构来训练Florence-2,以执行多样化和全面的视觉任务。广泛的评估表明,Florence-2是一个强大的视觉基础模型竞争者,具有前所未有的零样本和微调能力。
基于llama3 8B的SOTA视觉模型
llama3v是一个基于Llama3 8B和siglip-so400m的SOTA(State of the Art,即最先进技术)视觉模型。它是一个开源的VLLM(视觉语言多模态学习模型),在Huggingface上提供模型权重,支持快速本地推理,并发布了推理代码。该模型结合了图像识别和文本生成,通过添加投影层将图像特征映射到LLaMA嵌入空间,以提高模型对图像的理解能力。
视觉状态空间模型,线性复杂度,全局感知
VMamba是一种视觉状态空间模型,结合了卷积神经网络(CNNs)和视觉Transformer(ViTs)的优势,实现了线性复杂度而不牺牲全局感知。引入了Cross-Scan模块(CSM)来解决方向敏感问题,能够在各种视觉感知任务中展现出优异的性能,并且随着图像分辨率的增加,相对已有基准模型表现出更为显著的优势。
Assistiv.AI:人工智能辅助平台
Assistiv.AI是一个人工智能辅助平台,致力于为用户提供最优质的AI工具和资源。我们的使命是为您汇聚并开发最好的AI工具,帮助您充分发掘AI的潜力。我们以简单易用的方式,让AI变得普惠易及。平台整合了最先进的自然语言处理、计算机视觉、强化学习等AI技术,可以帮助企业和个人提高工作效率、简化生活。主要产品包括:AI工具箱、AskCodi编码助手、AI智能咨询等,覆盖文本生成、图像处理、交互式聊天、社交媒体营销等多个领域,可广泛应用于生产力、创作、商业、教育等场景。
无需编写代码,构建和销售 AI 驱动的应用
Clevis 是一个无需编写代码即可创建 AI 驱动应用的平台。通过其易于使用的界面和多种预构建的处理步骤,用户可以轻松构建和销售具有文本生成、图像处理和交互式聊天界面等功能的应用。您可以通过连接 Stripe 账户来轻松将应用以基于使用量的定价进行商业化。
Photoshop与SD/SDForge/ComfyUI之间的通信插件
sd-ppp是一个允许用户在Adobe Photoshop和各种Stable Diffusion界面(如SD/SDForge/ComfyUI)之间进行通信的插件。它支持多层操作,包括文本层和图像层,能够处理多个文档和多个Photoshop实例,并允许用户在文档的特定区域工作。该插件对于设计师和艺术家来说是一个强大的工具,因为它可以简化工作流程,提高创作效率,并允许他们利用Stable Diffusion的强大功能来增强他们的设计和艺术作品。
Qwen Turbo 1M Demo是一个由Qwen提供的Hugging Face空间。
Qwen Turbo 1M Demo是一个基于Hugging Face平台的人工智能模型演示。这个模型代表了自然语言处理技术的最新进展,特别是在中文文本理解和生成方面。它的重要性在于能够提供高效、准确的语言模型,以支持各种语言相关的应用,如机器翻译、文本摘要、问答系统等。Qwen Turbo 1M Demo以其较小的模型尺寸和快速的处理速度而受到青睐,适合需要快速部署和高效运行的场合。目前,该模型是免费试用的,具体价格和定位可能需要进一步的商业洽谈。
AI技术预览纹身去除效果,辅助决策
AI Tattoo Removal是一个利用人工智能技术展示纹身去除效果的先进工具。它提供了多种可视化选项和用户友好的界面,适用于考虑纹身去除的个人和专业纹身去除专家。该平台使用尖端的机器学习算法分析并展示纹身去除进度,用户可以查看不同的去除阶段、结果和治疗方案,以更好地理解去除过程。产品的主要优点包括即时可视化、个性化体验和免费的基础功能,同时提供高级功能订阅服务。
多模态语音大型语言模型
fixie-ai/ultravox-v0_4_1-llama-3_1-70b是一个基于预训练的Llama3.1-70B-Instruct和whisper-large-v3-turbo的大型语言模型,能够处理语音和文本输入,生成文本输出。该模型通过特殊伪标记<|audio|>将输入音频转换为嵌入,并与文本提示合并后生成输出文本。Ultravox的开发旨在扩展语音识别和文本生成的应用场景,如语音代理、语音到语音翻译和口语音频分析等。该模型遵循MIT许可,由Fixie.ai开发。
人脸匿名化技术,保留关键细节同时有效保护隐私。
face_anon_simple是一个人脸匿名化技术,旨在通过先进的算法在保护个人隐私的同时保留原始照片中的面部表情、头部姿势、眼神方向和背景元素。这项技术对于需要发布包含人脸的图片但又希望保护个人隐私的场合非常有用,比如在新闻报道、社交媒体和安全监控等领域。产品基于开源代码,允许用户自行部署和使用,具有很高的灵活性和应用价值。
图像水印技术,可在图片中嵌入局部化水印信息
Watermark Anything是一个由Facebook Research开发的图像水印技术,它允许在图片中嵌入一个或多个局部化水印信息。这项技术的重要性在于它能够在保证图像质量的同时,实现对图像内容的版权保护和追踪。该技术背景是基于深度学习和图像处理的研究,主要优点包括高鲁棒性、隐蔽性和灵活性。产品定位为研究和开发用途,目前是免费提供给学术界和开发者使用。
视频扩散模型,用于虚拟试穿。
Fashion-VDM是一个视频扩散模型(VDM),用于生成虚拟试穿视频。该模型接受一件衣物图片和人物视频作为输入,旨在生成人物穿着给定衣物的高质量试穿视频,同时保留人物的身份和动作。与传统的基于图像的虚拟试穿相比,Fashion-VDM在衣物细节和时间一致性方面表现出色。该技术的主要优点包括:扩散式架构、分类器自由引导增强控制、单次64帧512px视频生成的渐进式时间训练策略,以及联合图像-视频训练的有效性。Fashion-VDM在视频虚拟试穿领域树立了新的行业标准。
Hermes系列的最新版大型语言模型
Hermes 3是Nous Research公司推出的Hermes系列最新版大型语言模型(LLM),相较于Hermes 2,它在代理能力、角色扮演、推理、多轮对话、长文本连贯性等方面都有显著提升。Hermes系列模型的核心理念是将LLM与用户对齐,赋予终端用户强大的引导能力和控制权。Hermes 3在Hermes 2的基础上,进一步增强了功能调用和结构化输出能力,提升了通用助手能力和代码生成技能。
基于GIMM-VFI的ComfyUI帧插值工具
ComfyUI-GIMM-VFI是一个基于GIMM-VFI算法的帧插值工具,使用户能够在图像和视频处理中实现高质量的帧插值效果。该技术通过在连续帧之间插入新的帧来提高视频的帧率,从而使得动作看起来更加流畅。这对于视频游戏、电影后期制作和其他需要高帧率视频的应用场景尤为重要。产品背景信息显示,它是基于Python开发的,并且依赖于CuPy库,特别适用于需要进行高性能计算的场景。
交互式对话AI模型,提供问答和文本生成服务
ChatGPT是由OpenAI训练的对话生成模型,能够以对话形式与人互动,回答后续问题,承认错误,挑战错误的前提,并拒绝不适当的请求。OpenAI日前买下了http://chat.com域名,该域名已经指向了ChatGPT。ChatGPT它是InstructGPT的姊妹模型,后者被训练以遵循提示中的指令并提供详细的回答。ChatGPT代表了自然语言处理技术的最新进展,其重要性在于能够提供更加自然和人性化的交互体验。产品背景信息包括其在2022年11月30日的发布,以及在研究预览期间免费提供给用户使用。
视觉语言模型,结合图像和文本信息进行智能处理。
Aquila-VL-2B模型是一个基于LLava-one-vision框架训练的视觉语言模型(VLM),选用Qwen2.5-1.5B-instruct模型作为语言模型(LLM),并使用siglip-so400m-patch14-384作为视觉塔。该模型在自建的Infinity-MM数据集上进行训练,包含约4000万图像-文本对。该数据集结合了从互联网收集的开源数据和使用开源VLM模型生成的合成指令数据。Aquila-VL-2B模型的开源,旨在推动多模态性能的发展,特别是在图像和文本的结合处理方面。
使用AI将您的面部照片变成面部贴纸
Face Sticker AI是一个AI驱动的面部贴纸工具,它通过添加文本提示将用户的面部图像转换成奇妙的面部贴纸图像。该产品利用先进的面部识别技术和自然语言处理技术,确保生成的贴纸与原始图像高度相似,同时保持高清图像质量。Face Sticker AI不仅支持真人照片,还支持动画角色照片,满足用户个性化表达和创造的需求。产品背景信息显示,Face Sticker AI旨在提供一个简单易用的平台,让用户能够以前所未有的方式探索和创造面部贴纸,释放创造力。产品定价分为Base、Standard和Pro三个等级,用户可以根据自己的需求选择合适的计划购买积分。
利用Claude 3.5 Sonnet Vision API进行图像中物体检测和可视化的强大Python工具
Claude Vision Object Detection是一个基于Python的工具,它利用Claude 3.5 Sonnet Vision API来检测图像中的物体并进行可视化。该工具能够自动在检测到的物体周围绘制边界框,对它们进行标记,并显示置信度分数。它支持处理单张图片或整个目录中的图片,并且具有高精度的置信度分数,为每个检测到的物体使用鲜艳且不同的颜色。此外,它还能保存带有检测结果的注释图片。
基于Llama-3-8B的多模态大型语言模型,专注于UI任务。
Ferret-UI是首个以用户界面为中心的多模态大型语言模型(MLLM),专为指代表达、定位和推理任务设计。它基于Gemma-2B和Llama-3-8B构建,能够执行复杂的用户界面任务。这个版本遵循了Apple的研究论文,是一个强大的工具,可以用于图像文本到文本的任务,并且在对话和文本生成方面具有优势。
根据人类指令修复和编辑照片的框架
PromptFix是一个综合框架,能够使扩散模型遵循人类指令执行各种图像处理任务。该框架通过构建大规模的指令遵循数据集,提出了高频引导采样方法来控制去噪过程,并设计了辅助提示适配器,利用视觉语言模型增强文本提示,提高模型的任务泛化能力。PromptFix在多种图像处理任务中表现优于先前的方法,并在盲恢复和组合任务中展现出优越的零样本能力。
轻量级1.7B参数的语言模型,适用于多种任务。
SmolLM2是一系列轻量级的语言模型,包含135M、360M和1.7B参数的版本。这些模型能够在保持轻量级的同时解决广泛的任务,特别适合在设备上运行。1.7B版本的模型在指令遵循、知识、推理和数学方面相较于前代SmolLM1-1.7B有显著进步。它使用包括FineWeb-Edu、DCLM、The Stack等多个数据集进行了训练,并且通过使用UltraFeedback进行了直接偏好优化(DPO)。该模型还支持文本重写、总结和功能调用等任务。
© 2024 AIbase 备案号:闽ICP备08105208号-14