Florence-2-base-ft

Florence-2是由微软开发的高级视觉基础模型,采用基于提示的方法处理广泛的视觉和视觉-语言任务。该模型能够解释简单的文本提示,执行诸如图像描述、目标检测和分割等任务。它利用FLD-5B数据集,包含54亿个注释,覆盖1.26亿张图像,精通多任务学习。其序列到序列的架构使其在零样本和微调设置中均表现出色,证明是一个有竞争力的视觉基础模型。

需求人群:

"目标受众为需要进行图像处理和视觉-语言任务的研究人员和开发者。无论是学术研究还是商业应用,Florence-2都能提供强大的图像理解和生成能力,帮助用户在图像描述、目标检测等领域取得突破。"

使用场景示例:

研究人员使用Florence-2模型进行图像描述生成任务,以自动生成图像的描述性文本。

开发者利用Florence-2进行目标检测,以实现图像中物体的自动识别和分类。

企业使用Florence-2进行产品图像的自动标注和描述,以优化搜索引擎优化(SEO)和提升用户体验。

产品特色:

图像到文本转换:能够将图像内容转换为文本描述。

多任务学习:模型支持多种视觉任务,如图像描述、目标检测、区域分割等。

零样本和微调性能:在没有训练数据的情况下也能表现出色,且微调后性能进一步提升。

基于提示的方法:通过简单的文本提示即可执行特定任务。

序列到序列架构:模型采用序列到序列架构,能够生成连贯的文本输出。

自定义代码支持:允许用户根据自己的需求定制代码。

技术文档和示例:提供技术报告和Jupyter Notebook,方便用户进行推理和可视化。

使用教程:

步骤1:导入必要的库,如requests、PIL、transformers等。

步骤2:使用AutoModelForCausalLM和AutoProcessor从预训练模型中加载Florence-2模型。

步骤3:定义要执行的任务提示,如图像描述、目标检测等。

步骤4:下载或加载需要处理的图像。

步骤5:使用处理器将文本和图像转换为模型可接受的输入格式。

步骤6:调用模型的generate方法生成输出。

步骤7:使用处理器解码生成的文本,并根据任务进行后处理。

步骤8:打印或输出最终结果,如图像描述、检测框等。

浏览量:98

打开站点

网站流量情况

最新流量情况

月访问量

23904.81k

平均访问时长

00:04:51

每次访问页数

5.82

跳出率

43.33%

流量来源

直接访问

48.28%

自然搜索

35.88%

邮件

0.03%

外链引荐

12.71%

社交媒体

3.06%

展示广告

0

截止目前所有流量趋势图

地理流量分布情况

中国

13.77%

印度

8.48%

日本

3.85%

俄罗斯

4.86%

美国

17.58%

类似产品

精准图像编辑,一站式满足多任务需求

Emu Edit是一款多任务图像编辑模型,通过识别和生成任务完成精准图像编辑,并在此领域内取得了最新的技术突破。Emu Edit的架构针对多任务学习进行了优化,并在众多任务上进行训练,包括基于区域的编辑、自由形式的编辑以及检测和分割等计算机视觉任务。除此之外,为了更有效地处理这多种任务,我们引入了学习到的任务嵌入概念,用于指导生成过程以正确执行编辑指令。我们的模型经过多任务训练和使用学习到的任务嵌入都能显著提升准确执行编辑指令的能力。 Emu Edit还支持对未见任务的快速适应,通过任务倒转实现少样本学习。在这个过程中,我们保持模型权重不变,仅更新任务嵌入来适应新任务。我们的实验证明,Emu Edit能够迅速适应新任务,如超分辨率、轮廓检测等。这使得在标注样本有限或计算预算有限的情况下,使用Emu Edit进行任务倒转特别有优势。 为了支持对基于指令的图像编辑模型的严格且有根据的评估,我们还收集并公开发布了一个新的基准数据集,其中包含七种不同的图像编辑任务:背景修改(background)、综合图像变化(global)、风格修改(style)、对象移除(remove)、对象添加(add)、局部修改(local)以及颜色/纹理修改(texture)。此外,为了与Emu Edit进行正确比较,我们还分享了Emu Edit在数据集上的生成结果。 Emu Edit 2023 Meta保留所有版权

© 2025     AIbase    备案号:闽ICP备08105208号-14

隐私政策

用户协议

意见反馈 网站地图