需求人群:
["图像分类","目标检测","语义分割"]
使用场景示例:
基于 Vision Mamba 开发图像分类模型
基于 Vision Mamba 开发目标检测模型
基于 Vision Mamba 开发语义分割模型
产品特色:
高效的视觉表示学习
支持高分辨图像理解
计算和内存效率更高
超越经典视觉Transformers的性能
浏览量:54
最新流量情况
月访问量
4.75m
平均访问时长
00:06:34
每次访问页数
6.10
跳出率
36.20%
流量来源
直接访问
52.19%
自然搜索
32.64%
邮件
0.04%
外链引荐
12.93%
社交媒体
2.02%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
中国
14.32%
德国
3.68%
印度
9.04%
俄罗斯
3.92%
美国
19.25%
一种无混叠的任意尺度超分辨率方法。
Thera 是一种先进的超分辨率技术,能够在不同尺度下生成高质量图像。其主要优点在于内置物理观察模型,有效避免了混叠现象。该技术由 ETH Zurich 的研究团队开发,适用于图像增强和计算机视觉领域,尤其在遥感和摄影测量中具有广泛应用。
通过多实例扩散模型将单张图像生成高保真度的3D场景。
MIDI是一种创新的图像到3D场景生成技术,它利用多实例扩散模型,能够从单张图像中直接生成具有准确空间关系的多个3D实例。该技术的核心在于其多实例注意力机制,能够有效捕捉物体间的交互和空间一致性,无需复杂的多步骤处理。MIDI在图像到场景生成领域表现出色,适用于合成数据、真实场景数据以及由文本到图像扩散模型生成的风格化场景图像。其主要优点包括高效性、高保真度和强大的泛化能力。
图像条件扩散模型的微调工具
diffusion-e2e-ft是一个开源的图像条件扩散模型微调工具,它通过微调预训练的扩散模型来提高特定任务的性能。该工具支持多种模型和任务,如深度估计和法线估计,并提供了详细的使用说明和模型检查点。它在图像处理和计算机视觉领域具有重要应用,能够显著提升模型在特定任务上的准确性和效率。
无需相机校准信息的密集立体3D重建
DUSt3R是一种新颖的密集和无约束立体3D重建方法,适用于任意图像集合。它不需要事先了解相机校准或视点姿态信息,通过将成对重建问题视为点图的回归,放宽了传统投影相机模型的严格约束。DUSt3R提供了一种统一的单目和双目重建方法,并在多图像情况下提出了一种简单有效的全局对齐策略。基于标准的Transformer编码器和解码器构建网络架构,利用强大的预训练模型。DUSt3R直接提供场景的3D模型和深度信息,并且可以从中恢复像素匹配、相对和绝对相机信息。
基于双向状态空间模型的高效视觉表示学习框架
Vision Mamba是一个高效的视觉表示学习框架,使用双向Mamba模块构建,可以克服计算和内存限制,进行高分辨率图像的Transformer风格理解。它不依赖自注意力机制,通过位置嵌入和双向状态空间模型压缩视觉表示,实现更高性能,计算和内存效率也更好。该框架在 ImageNet分类、COCO目标检测和ADE20k语义分割任务上,性能优于经典的视觉Transformers,如DeiT,但计算和内存效率提高2.8倍和86.8%。
一个统一的用于图像和视频对象分割的模型
UniRef是一个统一的用于图像和视频参考对象分割的模型。它支持语义参考图像分割(RIS)、少样本分割(FSS)、语义参考视频对象分割(RVOS)和视频对象分割(VOS)等多种任务。UniRef的核心是UniFusion模块,它可以高效地将各种参考信息注入到基础网络中。 UniRef可以作为SAM等基础模型的插件组件使用。UniRef提供了在多个基准数据集上训练好的模型,同时也开源了代码以供研究使用。
HunyuanVideo-I2V 是腾讯推出的基于 HunyuanVideo 的图像到视频生成框架。
HunyuanVideo-I2V 是腾讯开源的图像到视频生成模型,基于 HunyuanVideo 架构开发。该模型通过图像潜在拼接技术,将参考图像信息有效整合到视频生成过程中,支持高分辨率视频生成,并提供可定制的 LoRA 效果训练功能。该技术在视频创作领域具有重要意义,能够帮助创作者快速生成高质量的视频内容,提升创作效率。
UniTok是一个用于视觉生成和理解的统一视觉分词器。
UniTok是一种创新的视觉分词技术,旨在弥合视觉生成和理解之间的差距。它通过多码本量化技术,显著提升了离散分词器的表示能力,使其能够捕捉到更丰富的视觉细节和语义信息。这一技术突破了传统分词器在训练过程中的瓶颈,为视觉生成和理解任务提供了一种高效且统一的解决方案。UniTok在图像生成和理解任务中表现出色,例如在ImageNet上实现了显著的零样本准确率提升。该技术的主要优点包括高效性、灵活性以及对多模态任务的强大支持,为视觉生成和理解领域带来了新的可能性。
强大的视频替换与编辑软件,利用AI技术实现自然效果。
VisoMaster是一款专注于视频替换和编辑的桌面客户端软件。它利用先进的AI技术,能够在图像和视频中实现高质量的替换,效果自然逼真。该软件操作简单,支持多种输入输出格式,并通过GPU加速提高处理效率。VisoMaster的主要优点是易于使用、高效处理以及高度定制化,适合视频创作者、影视后期制作人员以及对视频编辑有需求的普通用户。软件目前免费提供给用户,旨在帮助用户快速生成高质量的视频内容。
MatAnyone 是一个支持目标指定的稳定视频抠像框架,适用于复杂背景。
MatAnyone 是一种先进的视频抠像技术,专注于通过一致的记忆传播实现稳定的视频抠像。它通过区域自适应记忆融合模块,结合目标指定的分割图,能够在复杂背景中保持语义稳定性和细节完整性。该技术的重要性在于它能够为视频编辑、特效制作和内容创作提供高质量的抠像解决方案,尤其适用于需要精确抠像的场景。MatAnyone 的主要优点是其在核心区域的语义稳定性和边界细节的精细处理能力。它由南洋理工大学和商汤科技的研究团队开发,旨在解决传统抠像方法在复杂背景下的不足。
Video Depth Anything: Consistent Depth Estimation for Super-Long Videos
Video Depth Anything 是一个基于深度学习的视频深度估计模型,能够为超长视频提供高质量、时间一致的深度估计。该技术基于 Depth Anything V2 开发,具有强大的泛化能力和稳定性。其主要优点包括对任意长度视频的深度估计能力、时间一致性以及对开放世界视频的良好适应性。该模型由字节跳动的研究团队开发,旨在解决长视频深度估计中的挑战,如时间一致性问题和复杂场景的适应性问题。目前,该模型的代码和演示已公开,供研究人员和开发者使用。
一种新颖的图像到视频采样技术,基于Hunyuan模型实现高质量视频生成。
leapfusion-hunyuan-image2video 是一种基于 Hunyuan 模型的图像到视频生成技术。它通过先进的深度学习算法,将静态图像转换为动态视频,为内容创作者提供了一种全新的创作方式。该技术的主要优点包括高效的内容生成、灵活的定制化能力以及对高质量视频输出的支持。它适用于需要快速生成视频内容的场景,如广告制作、视频特效等领域。该模型目前以开源形式发布,供开发者和研究人员免费使用,未来有望通过社区贡献进一步提升其性能。
MangaNinja 是一种基于参考的线稿上色方法,可实现精确匹配和细粒度交互控制。
MangaNinja 是一种参考引导的线稿上色方法,它通过独特的设计确保精确的人物细节转录,包括用于促进参考彩色图像和目标线稿之间对应学习的块洗牌模块,以及用于实现细粒度颜色匹配的点驱动控制方案。该模型在自收集的基准测试中表现出色,超越了当前解决方案的精确上色能力。此外,其交互式点控制在处理复杂情况(如极端姿势和阴影)、跨角色上色、多参考协调等方面展现出巨大潜力,这些是现有算法难以实现的。MangaNinja 由来自香港大学、香港科技大学、通义实验室和蚂蚁集团的研究人员共同开发,相关论文已发表在 arXiv 上,代码也已开源。
SVFR是一个用于视频人脸修复的统一框架。
SVFR(Stable Video Face Restoration)是一个用于广义视频人脸修复的统一框架。它整合了视频人脸修复(BFR)、着色和修复任务,通过利用Stable Video Diffusion(SVD)的生成和运动先验,并结合统一的人脸修复框架中的任务特定信息,有效结合了这些任务的互补优势,增强了时间连贯性并实现了卓越的修复质量。该框架引入了可学习的任务嵌入以增强任务识别,并采用新颖的统一潜在正则化(ULR)来鼓励不同子任务之间的共享特征表示学习。此外,还引入了面部先验学习和自引用细化作为辅助策略,以进一步提高修复质量和时间稳定性。SVFR在视频人脸修复领域取得了最先进的成果,并为广义视频人脸修复建立了新的范式。
STAR是一种用于真实世界视频超分辨率的时空增强框架,首次将强大的文本到视频扩散先验集成到真实世界视频超分辨率中。
STAR是一种创新的视频超分辨率技术,通过将文本到视频扩散模型与视频超分辨率相结合,解决了传统GAN方法中存在的过度平滑问题。该技术不仅能够恢复视频的细节,还能保持视频的时空一致性,适用于各种真实世界的视频场景。STAR由南京大学、字节跳动等机构联合开发,具有较高的学术价值和应用前景。
从穿着人身上生成平铺布料的模型
TryOffAnyone是一个用于从穿着人身上生成平铺布料的深度学习模型。该模型能够将穿着衣物的人的图片转换成布料平铺图,这对于服装设计、虚拟试衣等领域具有重要意义。它通过深度学习技术,实现了高度逼真的布料模拟,使得用户可以更直观地预览衣物的穿着效果。该模型的主要优点包括逼真的布料模拟效果和较高的自动化程度,可以减少实际试衣过程中的时间和成本。
高质量身份保留的人像动画合成工具。
StableAnimator是首个端到端身份保留的视频扩散框架,能够在不进行后处理的情况下合成高质量视频。该技术通过参考图像和一系列姿势进行条件合成,确保了身份一致性。其主要优点在于无需依赖第三方工具,适合需要高质量人像动画的用户。
3D网格生成与语言模型的统一
LLaMA-Mesh是一项将大型语言模型(LLMs)预训练在文本上扩展到生成3D网格的能力的技术。这项技术利用了LLMs中已经嵌入的空间知识,并实现了对话式3D生成和网格理解。LLaMA-Mesh的主要优势在于它能够将3D网格的顶点坐标和面定义表示为纯文本,允许与LLMs直接集成而无需扩展词汇表。该技术的主要优点包括能够从文本提示生成3D网格、按需产生交错的文本和3D网格输出,以及理解和解释3D网格。LLaMA-Mesh在保持强大的文本生成性能的同时,实现了与从头开始训练的模型相当的网格生成质量。
人脸匿名化技术,保留关键细节同时有效保护隐私。
face_anon_simple是一个人脸匿名化技术,旨在通过先进的算法在保护个人隐私的同时保留原始照片中的面部表情、头部姿势、眼神方向和背景元素。这项技术对于需要发布包含人脸的图片但又希望保护个人隐私的场合非常有用,比如在新闻报道、社交媒体和安全监控等领域。产品基于开源代码,允许用户自行部署和使用,具有很高的灵活性和应用价值。
图像水印技术,可在图片中嵌入局部化水印信息
Watermark Anything是一个由Facebook Research开发的图像水印技术,它允许在图片中嵌入一个或多个局部化水印信息。这项技术的重要性在于它能够在保证图像质量的同时,实现对图像内容的版权保护和追踪。该技术背景是基于深度学习和图像处理的研究,主要优点包括高鲁棒性、隐蔽性和灵活性。产品定位为研究和开发用途,目前是免费提供给学术界和开发者使用。
8B参数变分自编码器模型,用于高效的文本到图像生成。
Flux.1 Lite是一个由Freepik发布的8B参数的文本到图像生成模型,它是从FLUX.1-dev模型中提取出来的。这个版本相较于原始模型减少了7GB的RAM使用,并提高了23%的运行速度,同时保持了与原始模型相同的精度(bfloat16)。该模型的发布旨在使高质量的AI模型更加易于获取,特别是对于消费级GPU用户。
高效3D高斯重建模型,实现大场景快速重建
Long-LRM是一个用于3D高斯重建的模型,能够从一系列输入图像中重建出大场景。该模型能在1.3秒内处理32张960x540分辨率的源图像,并且仅在单个A100 80G GPU上运行。它结合了最新的Mamba2模块和传统的transformer模块,通过高效的token合并和高斯修剪步骤,在保证质量的同时提高了效率。与传统的前馈模型相比,Long-LRM能够一次性重建整个场景,而不是仅重建场景的一小部分。在大规模场景数据集上,如DL3DV-140和Tanks and Temples,Long-LRM的性能可与基于优化的方法相媲美,同时效率提高了两个数量级。
ComfyUI的PuLID-Flux实现
PuLID-Flux ComfyUI implementation 是一个基于ComfyUI的图像处理模型,它利用了PuLID技术和Flux模型来实现对图像的高级定制和处理。这个项目是cubiq/PuLID_ComfyUI的灵感来源,是一个原型,它使用了一些方便的模型技巧来处理编码器部分。开发者希望在更正式地重新实现之前测试模型的质量。为了获得更好的结果,推荐使用16位或8位的GGUF模型版本。
去除镜面反射,揭示隐藏纹理
StableDelight是一个先进的模型,专注于从纹理表面去除镜面反射。它基于StableNormal的成功,后者专注于提高单目法线估计的稳定性。StableDelight通过应用这一概念来解决去除反射的挑战性任务。训练数据包括Hypersim、Lumos以及来自TSHRNet的各种镜面高光去除数据集。此外,我们在扩散训练过程中整合了多尺度SSIM损失和随机条件尺度技术,以提高一步扩散预测的清晰度。
一种在野外环境中分解图像为反射率和照明效果的技术。
Colorful Diffuse Intrinsic Image Decomposition 是一种图像处理技术,它能够将野外拍摄的照片分解为反照率、漫反射阴影和非漫反射残留部分。这项技术通过逐步移除单色照明和Lambertian世界假设,实现了对图像中多彩漫反射阴影的估计,包括多个照明和场景中的二次反射,同时模型了镜面反射和可见光源。这项技术对于图像编辑应用,如去除镜面反射和像素级白平衡,具有重要意义。
OpenCV的额外模块库,用于开发和测试新的图像处理功能。
opencv_contrib是OpenCV的额外模块库,用于开发和测试新的图像处理功能。这些模块通常在API稳定、经过充分测试并被广泛接受后,才会被整合到OpenCV的核心库中。该库允许开发者使用最新的图像处理技术,推动计算机视觉领域的创新。
开源计算机视觉库
OpenCV是一个跨平台的开源计算机视觉和机器学习软件库,它提供了一系列编程功能,包括但不限于图像处理、视频分析、特征检测、机器学习等。该库广泛应用于学术研究和商业项目中,因其强大的功能和灵活性而受到开发者的青睐。
开源自回归视觉生成模型项目
Open-MAGVIT2是由腾讯ARC实验室开源的一个自回归图像生成模型系列,包含从300M到1.5B不同规模的模型。该项目复现了Google的MAGVIT-v2分词器,实现了在ImageNet 256×256数据集上达到1.17 rFID的先进重建性能。通过引入不对称分词技术,将大词汇表分解为不同大小的子词汇表,并引入'下一个子标记预测'来增强子标记间的交互,以提高生成质量。所有模型和代码均已开源,旨在推动自回归视觉生成领域的创新和创造力。
© 2025 AIbase 备案号:闽ICP备08105208号-14