需求人群:
"VGGSfM主要面向计算机视觉领域的研究人员和开发者,尤其是那些专注于三维重建和深度学习技术的专业人士。该技术可以用于增强现实、虚拟现实、自动驾驶等领域,帮助他们从2D图像中提取出更精确的3D结构信息。"
使用场景示例:
在CO3D数据集上进行三维重建
在IMC Phototourism数据集上进行相机和点云重建
在ETH3D数据集上进行相机姿态和3D结构的重建
产品特色:
从输入图像中提取2D轨迹
使用图像和轨迹特征重建相机
基于这些轨迹和相机参数初始化点云
应用捆绑调整层进行重建细化
完全可微分的框架设计
在野外应用中重建照片,展示估计的点云和相机
在Co3D和IMC Phototourism上进行相机和点云重建的定性可视化
在每一行中,最左侧的帧包含查询图像和查询点,预测的轨迹点显示在右侧
使用教程:
1. 准备一组不受限制的2D图像作为输入
2. 使用VGGSfM模型从输入图像中提取2D轨迹
3. 利用提取的轨迹和图像特征重建相机
4. 基于轨迹和相机参数初始化点云
5. 应用捆绑调整层进行点云和相机的重建细化
6. 对重建结果进行评估和优化,确保精度和可靠性
7. 将重建的3D结构应用于相关领域,如增强现实、虚拟现实等
浏览量:21
最新流量情况
月访问量
1791
平均访问时长
00:00:04
每次访问页数
1.19
跳出率
50.57%
流量来源
直接访问
42.91%
自然搜索
28.65%
邮件
0.04%
外链引荐
19.69%
社交媒体
8.21%
展示广告
0
截止目前所有流量趋势图
地理流量分布情况
韩国
16.66%
美国
66.43%
深度学习驱动的三维重建技术
VGGSfM是一种基于深度学习的三维重建技术,旨在从一组不受限制的2D图像中重建场景的相机姿态和3D结构。该技术通过完全可微分的深度学习框架,实现端到端的训练。它利用深度2D点跟踪技术提取可靠的像素级轨迹,同时基于图像和轨迹特征恢复所有相机,并通过可微分的捆绑调整层优化相机和三角化3D点。VGGSfM在CO3D、IMC Phototourism和ETH3D三个流行数据集上取得了最先进的性能。
3D网格生成与语言模型的统一
LLaMA-Mesh是一项将大型语言模型(LLMs)预训练在文本上扩展到生成3D网格的能力的技术。这项技术利用了LLMs中已经嵌入的空间知识,并实现了对话式3D生成和网格理解。LLaMA-Mesh的主要优势在于它能够将3D网格的顶点坐标和面定义表示为纯文本,允许与LLMs直接集成而无需扩展词汇表。该技术的主要优点包括能够从文本提示生成3D网格、按需产生交错的文本和3D网格输出,以及理解和解释3D网格。LLaMA-Mesh在保持强大的文本生成性能的同时,实现了与从头开始训练的模型相当的网格生成质量。
图像条件扩散模型的微调工具
diffusion-e2e-ft是一个开源的图像条件扩散模型微调工具,它通过微调预训练的扩散模型来提高特定任务的性能。该工具支持多种模型和任务,如深度估计和法线估计,并提供了详细的使用说明和模型检查点。它在图像处理和计算机视觉领域具有重要应用,能够显著提升模型在特定任务上的准确性和效率。
3D图像匹配的先进模型
MASt3R是由Naver Corporation开发的一种用于3D图像匹配的先进模型,它专注于提升计算机视觉领域中的几何3D视觉任务。该模型利用了最新的深度学习技术,通过训练能够实现对图像之间精确的3D匹配,对于增强现实、自动驾驶以及机器人导航等领域具有重要意义。
提供关于人工智能的最佳资源,学习机器学习、数据科学、自然语言处理等。
AI Online Course是一个互动学习平台,提供清晰简明的人工智能介绍,使复杂的概念易于理解。它涵盖机器学习、深度学习、计算机视觉、自动驾驶、聊天机器人等方面的知识,并强调实际应用和技术优势。
CoreNet 是一个用于训练深度神经网络的库。
CoreNet 是一个深度神经网络工具包,使研究人员和工程师能够训练标准和新颖的小型和大型规模模型,用于各种任务,包括基础模型(例如 CLIP 和 LLM)、对象分类、对象检测和语义分割。
无需相机校准信息的密集立体3D重建
DUSt3R是一种新颖的密集和无约束立体3D重建方法,适用于任意图像集合。它不需要事先了解相机校准或视点姿态信息,通过将成对重建问题视为点图的回归,放宽了传统投影相机模型的严格约束。DUSt3R提供了一种统一的单目和双目重建方法,并在多图像情况下提出了一种简单有效的全局对齐策略。基于标准的Transformer编码器和解码器构建网络架构,利用强大的预训练模型。DUSt3R直接提供场景的3D模型和深度信息,并且可以从中恢复像素匹配、相对和绝对相机信息。
YOLOv8目标检测跟踪模型
YOLOv8是YOLO系列目标检测模型的最新版本,能够在图像或视频中准确快速地识别和定位多个对象,并实时跟踪它们的移动。相比之前版本,YOLOv8在检测速度和精确度上都有很大提升,同时支持多种额外的计算机视觉任务,如实例分割、姿态估计等。YOLOv8可通过多种格式部署在不同硬件平台上,提供一站式的端到端目标检测解决方案。
基于视频的3D场景重建
VisFusion是一个利用视频数据进行在线3D场景重建的技术,它能够实时地从视频中提取和重建出三维环境。这项技术结合了计算机视觉和深度学习,为用户提供了一个强大的工具,用于创建精确的三维模型。
开放式基于提示的图像生成
GLIGEN是一个开放式的基于文本提示的图像生成模型,它可以基于文本描述和边界框等限定条件生成图像。该模型通过冻结预训练好的文本到图像Diffusion模型的参数,并在其中插入新的数据来实现。这种模块化设计可以高效地进行训练,并具有很强的推理灵活性。GLIGEN可以支持开放世界的有条件图像生成,对新出现的概念和布局也具有很强的泛化能力。
基于双向状态空间模型的高效视觉表示学习框架
Vision Mamba是一个高效的视觉表示学习框架,使用双向Mamba模块构建,可以克服计算和内存限制,进行高分辨率图像的Transformer风格理解。它不依赖自注意力机制,通过位置嵌入和双向状态空间模型压缩视觉表示,实现更高性能,计算和内存效率也更好。该框架在 ImageNet分类、COCO目标检测和ADE20k语义分割任务上,性能优于经典的视觉Transformers,如DeiT,但计算和内存效率提高2.8倍和86.8%。
用于视频超分辨率和去模糊的深度学习模型
FMA-Net是一个用于视频超分辨率和去模糊的深度学习模型。它可以将低分辨率和模糊的视频恢复成高分辨率和清晰的视频。该模型通过流引导的动态过滤和多注意力的迭代特征精炼技术,可以有效处理视频中的大动作,实现视频的联合超分辨率和去模糊。该模型结构简单、效果显著,可以广泛应用于视频增强、编辑等领域。
从合成数据中学习视觉表示模型
该代码仓库包含从合成图像数据(主要是图片)进行学习的研究,包括StableRep、Scaling和SynCLR三个项目。这些项目研究了如何利用文本到图像模型生成的合成图像数据进行视觉表示模型的训练,并取得了非常好的效果。
一个统一的用于图像和视频对象分割的模型
UniRef是一个统一的用于图像和视频参考对象分割的模型。它支持语义参考图像分割(RIS)、少样本分割(FSS)、语义参考视频对象分割(RVOS)和视频对象分割(VOS)等多种任务。UniRef的核心是UniFusion模块,它可以高效地将各种参考信息注入到基础网络中。 UniRef可以作为SAM等基础模型的插件组件使用。UniRef提供了在多个基准数据集上训练好的模型,同时也开源了代码以供研究使用。
一款用于训练PyTorch计算机视觉模型的开源库。
YOLO-NAS Pose是一款免费的、开源的库,用于训练基于PyTorch的计算机视觉模型。它提供了训练脚本和快速简单复制模型结果的示例。内置SOTA模型,可以轻松加载和微调生产就绪的预训练模型,包括最佳实践和验证的超参数,以实现最佳的准确性。可以缩短训练生命周期,消除不确定性。提供分类、检测、分割等不同任务的模型,可以轻松集成到代码库中。
在线AI抠图工具 能抠任何图像中的任何对象
SAM是一个可提示的分割系统,能够对不熟悉的对象和图像进行零样本泛化,无需额外训练。它使用各种输入提示,可以进行广泛的分割任务,无需额外训练。它的可提示设计可以与其他系统灵活集成。它在1100万张图像上训练,拥有10亿个分割掩模。它的高效模块化设计使其可以在几毫秒内进行推理。Segment Anything Model (SAM),该模型能够根据文本指令等方式实现图像分割,而且万物皆可识别和一键抠图,上传图片点击物体即可识别。
从单张图片重建逼真的3D人体模型
PSHuman是一个创新的框架,它利用多视图扩散模型和显式重构技术,从单张图片中重建出逼真的3D人体模型。这项技术的重要性在于它能够处理复杂的自遮挡问题,并且在生成的面部细节上避免了几何失真。PSHuman通过跨尺度扩散模型联合建模全局全身形状和局部面部特征,实现了细节丰富且保持身份特征的新视角生成。此外,PSHuman还通过SMPL-X等参数化模型提供的身体先验,增强了不同人体姿态下的跨视图身体形状一致性。PSHuman的主要优点包括几何细节丰富、纹理保真度高以及泛化能力强。
基于文本生成姿态并进一步生成图像的模型
text-to-pose是一个研究项目,旨在通过文本描述生成人物姿态,并利用这些姿态生成图像。该技术结合了自然语言处理和计算机视觉,通过改进扩散模型的控制和质量,实现了从文本到图像的生成。项目背景基于NeurIPS 2024 Workshop上发表的论文,具有创新性和前沿性。该技术的主要优点包括提高图像生成的准确性和可控性,以及在艺术创作和虚拟现实等领域的应用潜力。
高分辨率图像合成的线性扩散变换器
Sana-1.6B是一个高效的高分辨率图像合成模型,它基于线性扩散变换器技术,能够生成高质量的图像。该模型由NVIDIA实验室开发,使用DC-AE技术,具有32倍的潜在空间,能够在多个GPU上运行,提供强大的图像生成能力。Sana-1.6B以其高效的图像合成能力和高质量的输出结果而闻名,是图像合成领域的重要技术。
高效率的高分辨率图像合成框架
Sana是一个文本到图像的框架,能够高效生成高达4096×4096分辨率的图像。它以极快的速度合成高分辨率、高质量的图像,并保持强大的文本-图像对齐,可以部署在笔记本电脑GPU上。Sana的核心设计包括深度压缩自编码器、线性扩散变换器(DiT)、仅解码器的小型语言模型作为文本编码器,以及高效的训练和采样策略。Sana-0.6B与现代大型扩散模型相比,体积小20倍,测量吞吐量快100倍以上。此外,Sana-0.6B可以部署在16GB笔记本电脑GPU上,生成1024×1024分辨率图像的时间少于1秒。Sana使得低成本的内容创作成为可能。
临床组织病理学成像评估基础模型
CHIEF(Clinical Histopathology Imaging Evaluation Foundation)模型是一个用于癌症诊断和预后预测的病理学基础模型。它通过两种互补的预训练方法提取病理学成像特征,包括无监督预训练用于识别瓦片级别特征和弱监督预训练用于识别整个幻灯片的模式。CHIEF模型使用60,530个全幻灯片图像(WSIs)开发,覆盖19个不同的解剖部位,通过预训练在44TB的高分辨率病理学成像数据集上,提取对癌症细胞检测、肿瘤起源识别、分子档案表征和预后预测有用的微观表示。CHIEF模型在来自24个国际医院和队列的32个独立幻灯片集上的19,491个全幻灯片图像上进行了验证,整体性能超过最先进的深度学习方法高达36.1%,显示出其能够解决不同人群样本和不同幻灯片制备方法中观察到的领域偏移问题。CHIEF为癌症患者的高效数字病理学评估提供了一个可泛化的基础。
Stable Diffusion 3.5 Large的三款ControlNets模型
ControlNets for Stable Diffusion 3.5 Large是Stability AI推出的三款图像控制模型,包括Blur、Canny和Depth。这些模型能够提供精确和便捷的图像生成控制,适用于从室内设计到角色创建等多种应用场景。它们在用户偏好的ELO比较研究中排名第一,显示出其在同类模型中的优越性。这些模型在Stability AI社区许可下免费提供给商业和非商业用途,对于年收入不超过100万美元的组织和个人,使用完全免费,并且产出的媒体所有权归用户所有。
FLUX.1的最小且通用的控制器
OminiControl是一个为Diffusion Transformer模型如FLUX设计的最小但功能强大的通用控制框架。它支持主题驱动控制和空间控制(如边缘引导和图像修复生成)。OminiControl的设计非常精简,仅引入了基础模型0.1%的额外参数,同时保持了原始模型结构。这个项目由新加坡国立大学的学习与视觉实验室开发,代表了人工智能领域中图像生成和控制技术的最新进展。
先进的多模态图像生成模型,结合文本提示和视觉参考生成高质量图像。
Qwen2vl-Flux是一个结合了Qwen2VL视觉语言理解能力的FLUX框架的先进多模态图像生成模型。该模型擅长基于文本提示和视觉参考生成高质量图像,提供卓越的多模态理解和控制。产品背景信息显示,Qwen2vl-Flux集成了Qwen2VL的视觉语言能力,增强了FLUX的图像生成精度和上下文感知能力。其主要优点包括增强的视觉语言理解、多种生成模式、结构控制、灵活的注意力机制和高分辨率输出。
未来演示控制的手势识别技术
Phantomy AI是一款利用计算机视觉软件,通过屏幕对象检测和手势识别技术,增强用户交互和演示的先进工具。它无需额外硬件,即可通过直观的手势控制屏幕,为用户提供了一种无需接触的交互方式。Phantomy AI的主要优点包括高精准的屏幕对象检测、基于手势的控制、流畅的幻灯片导航、增强的用户体验和广泛的应用场景。产品背景信息显示,Phantomy AI由AI工程师Almajd Ismail开发,他拥有软件开发和全栈开发的背景。关于价格和定位,页面上没有提供具体信息。
一个专门用于解决数独谜题的RWKV模型。
Sudoku-RWKV是一个基于RWKV模型的数独解题工具,它利用深度学习技术来解决数独问题。这个模型经过专门训练,能够处理大量的数独样本,具有较高的解题准确率。产品背景信息显示,该模型在训练时使用了约2M的数独样本,覆盖了约39.2B的token,参数量大约为12.7M,词汇量为133,架构为8层,每层320维度。该模型的主要优点是高效率和高准确率,能够解决任何可解的数独谜题。
面向开放世界的检测与理解统一视觉模型
DINO-X是一个以物体感知为核心的视觉大模型,具备开集检测、智能问答、人体姿态、物体计数、服装换色等核心能力。它不仅能识别已知目标,还能灵活应对未知类别,凭借先进算法,模型具备出色的适应性和鲁棒性,能够精准应对各种不可预见的挑战,提供针对复杂视觉数据的全方位解决方案。DINO-X的应用场景广泛,包括机器人、农业、零售行业、安防监控、交通管理、制造业、智能家居、物流与仓储、娱乐媒体等,是DeepDataSpace公司在计算机视觉技术领域的旗舰产品。
© 2024 AIbase 备案号:闽ICP备08105208号-14